如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(I)证明:PA⊥BD(II)设PD=AD=1,求棱锥

如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(I)证明:PA⊥BD(II)设PD=AD=1,求棱锥

题型:四川省期末题难度:来源:
如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,
PD⊥底面ABCD.
(I)证明:PA⊥BD
(II)设PD=AD=1,求棱锥D﹣PBC的高.
答案
解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,
由余弦定理得BD=
从而BD2+AD2=AB2
故BD⊥AD
又PD⊥底面ABCD,
可得BD⊥PD
所以BD⊥平面PAD.
故PA⊥BD.
(II)解:作DE⊥PB于E,
已知PD⊥底面ABCD,
则PD⊥BC,
由(I)知,BD⊥AD,
又BC∥AD,∴BC⊥BD.
故BC⊥平面PBD,BC⊥DE,
则DE⊥平面PBC.
由题设知PD=1,
则BD=,PB=2.
根据DE·PB=PD·BD,
得DE=,即棱锥D﹣PBC的高为
举一反三
如图,在圆锥PO中,已知PO=,⊙OD的直径AB=2,点C在上,且∠CAB=30°,D为AC的中点.
(Ⅰ)证明:AC⊥平面POD;
(Ⅱ)求直线OC和平面PAC所成角的正弦值.
题型:四川省期末题难度:| 查看答案
如图,在三棱锥P﹣ABC中,PA⊥AC,PA⊥AB,PA=AB,,点D,E分别在棱PB,PC上,且DE∥BC,
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值.
题型:江西省月考题难度:| 查看答案
四棱锥P﹣ABCD中,PA⊥底面ABCD,AB∥CD,

(1)求证:BC⊥平面PAC;
(2)求二面角D﹣PC﹣A的平面角的余弦值;
(3)求点B到平面PCD的距离.
题型:天津月考题难度:| 查看答案
如图,棱锥P﹣ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=
(1)求证:BD⊥平面PAC;
(2)求二面角P﹣CD﹣B余弦值的大小;
(3)求点C到平面PBD的距离.
题型:陕西省期末题难度:| 查看答案
已知三棱锥P﹣ABC中,PA⊥ABC,AB⊥AC,PA=AC= AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
题型:陕西省月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.