如图在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60 °,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.(1)求证:BE∥平

如图在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60 °,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.(1)求证:BE∥平

题型:福建省月考题难度:来源:
如图在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60 °,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求二面角P﹣BC﹣A的大小.

答案
证明:(1)取PD的中点M,
∵E是PC的中点
∴ME是△PCD的中位线
∴ME∥FB
∴四边形MEBF是平行四边形
∴BE∥MF
∵BE∥平面PDF,
MF平面PDF
∴BE∥平面PDF.
(2)连接BD,易得△ABD为等边三角形
又由F为AB的中点
∴DF⊥AB
又∵PA⊥平面ABCD,
∴PA⊥DF
又由PA∩AB=A
∴DF⊥平面PAB
又∵DF平面PDF
∴平面PDF⊥平面PAB.
(3)过点A做AH⊥CB延长线于H,
因为PA⊥面ABCD,
所以PH⊥BC,
既∠PHA为二面角P﹣BC﹣A的平面角,
在Rt△ABC中
所以∠PHA=30°既二面角P﹣BC﹣A的大小为30°.
举一反三
如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,EF⊥PB交PB于点F.
(1)若PD=DC=2,求三棱锥A﹣BDE的体积;
(2)证明PA∥平面EDB;
(3)证明PB⊥平面EFD.
题型:广东省月考题难度:| 查看答案
在空间中,下列命题正确的是 [     ]
A..若三条直线两两相交,则这三条直线确定一个平面
B.若直线m与平面α内的一条直线平行,则m∥α
C.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面β
D.若直线a与直线b平行,且直线l⊥a,则l⊥b 
题型:广东省月考题难度:| 查看答案
如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.
题型:广东省月考题难度:| 查看答案
如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,E是PD的中点,且PA=BC=AD.
(1)求证:CE∥平面PAB
(2)求证:CD⊥平面PAC
(3)若PA=1,求三棱锥C﹣PAD的体积.
题型:广东省月考题难度:| 查看答案
如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.
(1)求异面直线PD一AE所成角的大小;
(2)求证:EF⊥平面PBC;
(3)求二面角F﹣PC﹣B的大小.
题型:广西自治区月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.