如图,在正方体中,是棱的中点.(Ⅰ)证明:平面;(Ⅱ)证明: .
试题库
首页
如图,在正方体中,是棱的中点.(Ⅰ)证明:平面;(Ⅱ)证明: .
题型:不详
难度:
来源:
如图,在正方体
中,
是棱
的中点.
(Ⅰ)证明:
平面
;
(Ⅱ)证明:
.
答案
(1)根据题意,要证明线面平行,一般先证明线线平行,该试题关键是证明
EO得到。
(2)对于已知中
,那么可知得到线面垂直,
,从而证明线线垂直。
解析
试题分析:证明:(1)连接AC交BD于O点,连接EO
∵ 正方体
中,
是棱
的中点
∴
EO
又∵
∴
平面
(2)由题易知:
∴
∴
点评:主要是考查了运用线面平行的判定定理以及线面垂直的性质定理来证明平行和垂直,属于基础题。
举一反三
在长方体
中,
,
,
为
中点.(Ⅰ)证明:
;(Ⅱ)求
与平面
所成角的正弦值;(Ⅲ)在棱
上是否存在一点
,使得
∥平面
?若存在,求
的长;若不存在,说明理由.
题型:不详
难度:
|
查看答案
如图,四边形PCBM是直角梯形,
,
∥
,
.又
,
,直线AM与直线PC所成的角为
.
(1)求证:
;
(2)求二面角
的余弦值.
题型:不详
难度:
|
查看答案
长方体
中,底面
是正方形,
,
是
上的一点.
⑴求异面直线
与
所成的角;
⑵若
平面
,求三棱锥
的体积;
题型:不详
难度:
|
查看答案
在棱长为
的正方体
中,
分别为
的中点.
(1)求直线
与平面
所 成 角的大小;
(2)求二面角
的大小.
题型:不详
难度:
|
查看答案
如图所示,在四棱锥
中,底面
为矩
形,
⊥平面
,
,
为
上的点,若
⊥平面
(1)求证:
为
的中点;
(2)求二面角
的大小.
题型:不详
难度:
|
查看答案
最新试题
纸币是由国家发行的强制使用的价值符号,这就是说 [ ]①在一定时期内发行多少纸币是由国家决定的 ②每种面值的纸币
Because he ________ the secret, his friend became very angry
阅读理解。 One night, as Diaz stepped off the train and onto
“横看成岭侧成峰,远近高低各不同”是从正面、侧面、高处往低处俯视,这三种角度看风景,若一个实物正面看是三角形,侧面看也是
下列关于合力和分力的关系的说法中,正确的是( )A.合力一定比分力大B.合力可以同时垂直于每个分力C.合力的方向可以
下列对生活中物理现象的分析,正确的是 [ ]A. 体操运动员参加单杠比赛时,先要在手中抹点滑石粉,这是为了
农作物生长需要氮、磷、钾等营养元素.下列化学肥料中属于钾肥的是( )A.(NH4)2SO4B.NH4HCO3C.NH4
阅读下面的文言文,完成14—16题。六国论苏洵六国破灭,非兵不利,战不善,弊在赂秦。赂秦而力亏,破灭之道也。或曰:六国互
已知n条直线l1:x-y+C1=0,C1=2,l2:x-y+C2=0,l3:x-y+C3=0,…,ln:x-y+Cn=0
【题文】(14分)阅读下列材料材料一 宋朝时期,城市开始大规模
热门考点
给出下面四个条件:①,②,③,④,能使函数y=logax-2为单调减函数的是( )。
广口瓶被称为气体实验的“万能瓶”,是因为它可以配合玻璃管和其他简单仪器组成各种功能的装置。下列各图中能用作防倒吸安全瓶的
已知函数f(x)=x|x-a|,(a∈R),若a=2,解关于x的不等式f(x)<x.
下列控制生物某个具体性状的是[ ]A.细胞中的染色体 B.细胞核和细胞质中的核酸 C.生物体内所有细
推进城镇化有利于化解制约我国科学发展的一些突出问题。在推进城镇化的过程中应重视( )①发展大城市,促进优势资源进一步向
某班的5位同学在向“救助贫困学生”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是(
两个弹簧振子甲的固有频率为f,乙的固有频率为10f,若它们均在频率为9f,的驱动力作用下受迫振动,则( ).A.振子
下列营养物质中,不能为人体提供能量的是A.脂肪B.糖类C.蛋白质D.纤维素
画图题:如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图
阅读《阿长与〈山海经〉》选段,完成文后题目。(18分)大概是太过于念念不忘了,连阿长也来问《山海经》是怎么一回事,这是我
化肥和农药
书名号
物质的分类
副词
罗马圆形竞技场
企业兼并与企业***
一元一次方程的一般形式
王安石变法
电容器的动态分析
印度
超级试练试题库
© 2017-2019 超级试练试题库,All Rights Reserved.