三条直线相交于一点,可能确定的平面有A.个B.个C.个D.个或个
题型:不详难度:来源:
答案
D |
解析
试题分析:三条直线相交于一点,如果三条直线共面,则确定一个平面;如果三条直线不共面,则可以确定三个平面. 点评:两条相交直线就可以确定一个平面,所以解决本小题需要分三条直线共面和不共面两种情况. |
举一反三
如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是( )
|
a,b,c表示三条不重合的直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b;②若bM,a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.其中正确命题的个数有 |
将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论: ①AC⊥BD; ②△ACD是等边三角形; ③AB与平面BCD成60°的角; ④AB与CD所成的角是60°. 其中正确结论的序号是________. |
如图,△ABC中,AC=BC=AB,ABED是边长为1的正方形,EB⊥底面ABC,若G,F分别是EC,BD的中点. (1)求证:GF∥底面ABC; (2)求证:AC⊥平面EBC; |
如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1; (2)求证:AC1∥平面CDB1; (3)求异面直线AC1与B1C所成角的余弦值. |
最新试题
热门考点