(本小题满分12分)在边长为2的正方体中,E是BC的中点,F是的中点(1)求证:CF∥平面(2)求二面角的平面角的余弦值.

(本小题满分12分)在边长为2的正方体中,E是BC的中点,F是的中点(1)求证:CF∥平面(2)求二面角的平面角的余弦值.

题型:不详难度:来源:
(本小题满分12分)
在边长为2的正方体中,EBC的中点,F的中点

(1)求证:CF∥平面
(2)求二面角的平面角的余弦值.
答案
(1)根据线面平行的判定定理,结合CF∥OE ,来得到证明。
(2)
解析

试题分析:解:(Ⅰ)取A’D的中点O,连接OF
∵点F为DD’的中点;
∴OF∥A’D’且OF=A’D’;
∴OF∥AD且OF=AD;                 2分
∵点E为BC的中点
∴EC∥AD且EC=AD;
∴OF∥EC且OF=EC;
∴四边形OBCF为平行四边形            .3分
∴CF∥OE
又FC面A’DE且OE面A’DE
∴CF∥面A’DE                       .6分
(Ⅱ)取AD的中点M,连接ME
过点M作MH⊥A’D,垂足为H点,连接HE
∵AB∥ME,又AB⊥面ADD’A’
∴ME⊥面ADD’A’
∵A’D面ADD’A’
∴ME⊥A’D
又ME⊥A’D,ME∩MH = M
∴A’D⊥面MHE
∵HE面MHE
∴A’D⊥HE
∴∠MHE是二面角E-A’D-A的平面角            .9分
在Rt△MHD中, sin∠A’DA =
∴MH =" sin" 45°=
在Rt△MHD中,tan∠MHE =
∴sin∠MHE =                      .12分
点评:解决俄ud关键是对于线面平行的判定定理的运用,以及二面角的求解,属于基础题。
举一反三
如图,已知六棱锥PABCDEF的底面是正六边形,平面ABC,给出下列结论:①;②平面平面PBC;③直线平面PAE;④;⑤直线PD与平面PAB所成角的余弦值为
其中正确的有                (把所有正确的序号都填上)。
题型:不详难度:| 查看答案
(本小题13分)如图1,在三棱锥PABC中,平面ABCD为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。

(1)证明:平面PBC
(2)求三棱锥DABC的体积;
(3)在的平分线上确定一点Q,使得平面ABD,并求此时PQ的长。
题型:不详难度:| 查看答案
已知三个平面,若,且相交但不垂直,分别为内的直线,则(    )
A.B.C.D.

题型:不详难度:| 查看答案
(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。

(Ⅰ)求证:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
题型:不详难度:| 查看答案
已知是直线,是平面,给出下列命题:
①若,则
②若,则
③若m,n,m,n,则
④若,则
其中正确的命题是(   )。
A.①②B.②④C.②③D.③④

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.