(本小题满分12分)如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中点.(Ⅰ)求

(本小题满分12分)如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中点.(Ⅰ)求

题型:不详难度:来源:
(本小题满分12分)
如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中点.

(Ⅰ)求证:DA⊥平面PAC;
(Ⅱ)点G为线段PD的中点,证明CG∥平面PAF;
(Ⅲ)求三棱锥A—CDG的体积.
答案
(1)证明:由四边形是平行四边形,推出
平面推出,从而平面.
(2)证明四边形为平行四边形,推出,证得∥平面
(3).
解析

试题分析:(1)证明:四边形是平行四边形,
平面,又
平面.                      (4分)
(2)的中点为,在平面内作,则平行且等于,连接,则四边形为平行四边形,         (6分)
平面平面
∥平面。                                  (8分)
(3)设的中点,连结,则平行且等于
平面平面
.                 (12分)
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题计算体积时运用了“等体积法”,简化了解答过程。
举一反三
如图,长方体中,,点上,且

(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值.
题型:不详难度:| 查看答案
(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)若,且异面直线的夹角为时,求二面角的余弦值.
题型:不详难度:| 查看答案
、b是两条不同的直线,是两个不同的平面,则下列四个命题中正确的是(    )
A.若⊥b,,则b∥B.若,则
C.若,则 D.若⊥b,,b⊥,则

题型:不详难度:| 查看答案
(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)当时,求三棱锥的体积.
题型:不详难度:| 查看答案
(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.

(1)证明:平面PBE平面PAB;
(2)求PC与平面PAB所成角的余弦值。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.