已知平行六面体ABCD-A1B1C1D1中,∠A1AD=∠A1AB=∠BAD=60°,AA1=AB=AD=1,E为A1D1的中点。给出下列四个命题:①∠BCC1

已知平行六面体ABCD-A1B1C1D1中,∠A1AD=∠A1AB=∠BAD=60°,AA1=AB=AD=1,E为A1D1的中点。给出下列四个命题:①∠BCC1

题型:不详难度:来源:
已知平行六面体ABCDA1B1C1D1中,∠A1AD=∠A1AB=∠BAD=60°,AA1ABAD=1,EA1D1的中点。

给出下列四个命题:①∠BCC1为异面直线CC1所成的角;②三棱锥A1ABD是正三棱锥;③CE⊥平面BB1D1D;④;⑤||=.其中正确的命题有_____________.(写出所有正确命题的序号)
答案
②④⑤
解析

试题分析::①∵∠BCC1为120°,而异面直线AD与CC1所成的角为60°,故①错误;
②三棱锥A1-ABD的每个面都为正三角形,故为正四面体,故②正确;
④根据向量加法的三角形法则,
,故④正确;
,所以CE与BD不垂直,故③错误;
⑤在三角形ACC1中,
,所以||=
点评:本题考查了异面直线所成的角的定义,直线与平面垂直的定义,正三棱锥的定义,向量加法的三角形法则和数量积运算性质,知识点较为综合,我们应熟练掌握每一个知识点。
举一反三
如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中点.

(1)求证:平面O1AC平面O1BD
(2)求二面角O1-BC-D的大小;
(3)求点E到平面O1BC的距离.
题型:不详难度:| 查看答案
如图,在中,边上的高,,沿翻折,使得,得到几何体

(1)求证:
(2)求与平面所成角的正切值。
题型:不详难度:| 查看答案
如图1,在平行四边形ABCD中,AB=1,BD,∠ABD=90°,EBD上的一个动点,现将该平行四边形沿对角线BD折成直二面角ABDC,如图2所示.

(1)若FG分别是ADBC的中点,且AB∥平面EFG,求证:CD∥平面EFG
(2)当图1中AEEC最小时,求图2中二面角AECB的大小.
题型:不详难度:| 查看答案
如图,在三棱锥中,底面,点分别在棱上,且 

(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?若存在,请确定点E的位置;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知垂直平行四边形所在平面,若,则平行四边形一定是(填形状)
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.