(本小题满分12分)如图所示,△是正三角形,和都垂直于平面,且,,是的中点.(1)求证:∥平面;(2)求三棱锥的体积.

(本小题满分12分)如图所示,△是正三角形,和都垂直于平面,且,,是的中点.(1)求证:∥平面;(2)求三棱锥的体积.

题型:不详难度:来源:
(本小题满分12分)
如图所示,△是正三角形,都垂直于平面,且的中点.

(1)求证:∥平面
(2)求三棱锥的体积.
答案
(1)只需证明;(2)
解析

试题分析:(1)设的中点,连,则
--------------2分
又  
,即四边形为平行四边形.------------4分
 又平面
∥平面---------------------------------------6分
注:若学生用面面平行的性质解答,即证平面∥平面,按相应步骤给分.

(2)∵
平面,知
平面  由(1)知平面
--------------------------------------------------8分

--------------------12分
点评:立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。 (2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4) 利用对应线段成比例。 (5) 利用面面平行,等等。
举一反三
(本小题满分12分)
如图,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1DA1B1中点.

(1)求证:C1DAB1 ;
(2)当点FBB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.
题型:不详难度:| 查看答案
(本题满分12分)
如图所示,在矩形中,的中点,F为BC的中点,O为AE的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且

(1)求证:
(2)求二面角E-AP-B的余弦值.
题型:不详难度:| 查看答案
已知直线m,n与平面α,β,给出下列三个命题:
①若m∥α,n∥α,则m∥n;
②若m∥α,n⊥α,则n⊥m;
③若m⊥α,m∥β,则α⊥β.
其中真命题的个数是______个
题型:不详难度:| 查看答案
是两条不同的直线,是三个不同的平面.给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
其中正确命题的序号是(  )
A.①和②B.②和③C.③和④D.①和④

题型:不详难度:| 查看答案
在正三棱锥中,分别是的中点,有下列三个论断:
;②//平面;③平面
其中正确论断的个数为 (   )
A.3个     B.2个C.1个D.0个

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.