解:由直三棱柱性质得平面ABC⊥平面BCC1B1,过A作AN⊥平面BCC1B1,垂足为N,则AN⊥平面BCC1B1(AN即为我们要找的垂线),在平面BCB1内过N作NQ⊥棱B1C,垂足为Q,连接QA,则∠NQA即为二面角的平面角. ∵AB1在平面ABC内的射影为AB,CA⊥AB, ∴CA⊥B1A.AB=BB1=1,得AB1=. ∵直线B1C与平面ABC成30°角,∴∠B1CB=30°,B1C=2. 在Rt△B1AC中,由勾股定理,得AC=.∴AQ=1. 在Rt△BAC中,AB=1,AC=,得AN=. sin∠AQN==, 即二面角BB1CA的正弦值为. |