(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1,
连接A1D,C1F1,CF1,因为AB="4," CD=2,且AB//CD, 所以CDA1F1,A1F1CD为平行四边形,所以CF1//A1D, 又因为E、E分别是棱AD、AA的中点,所以EE1//A1D, 所以CF1//EE1,又因为平面FCC,平面FCC, 所以直线EE//平面FCC. (2)因为AB="4," BC="CD=2," 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC-C的一个平面角, 在△BCF为正三角形中,,在Rt△CC1F中, △OPF∽△CC1F,∵∴, 在Rt△OPF中,,,所以二面角B-FC-C的余弦值为. |