如图,已知正三角形PAD,正方形ABCD,平面PAD⊥平面ABCD,E为PD的中点.(1)求证:CD⊥AE;(2)求证:AE⊥平面PCD;(3)求直线AC与平面

如图,已知正三角形PAD,正方形ABCD,平面PAD⊥平面ABCD,E为PD的中点.(1)求证:CD⊥AE;(2)求证:AE⊥平面PCD;(3)求直线AC与平面

题型:不详难度:来源:
如图,已知正三角形PAD,正方形ABCD,平面PAD⊥平面ABCD,E为PD的中点.
(1)求证:CD⊥AE;
(2)求证:AE⊥平面PCD;
(3)求直线AC与平面PCD所成的角的大小的正弦..
答案
(1)取AD的中点O,由正△PAD可得PO⊥AD,
∵平面PAD⊥平面ABCD,∴PO⊥平面ABCD,∴PO⊥CD.
又∵CD⊥AD,PO∩AD=O,
∴CD⊥平面PAD,
∴CD⊥AE.
(2)由(1)可知:CD⊥AE.
∵E为正三角形PAD的边PD的中点,∴AE⊥PD.
∵CD∩PD=D,∴AE⊥平面PCD.
(3)由(2)可知:AE⊥平面PCD.
∴∠ACE即为直线AC与平面PCD所成的角.
不妨设AD=2.
则AE=


3
,AC=2


2

sin∠ACE=
AE
AC
=


6
4
举一反三
已知平面αβ,A,C∈α,B,D∈β,AB⊥CD,且AB=2,直线AB与平面α所成的角为60°,则线段CD长的取值范围为(  )
A.[2,+∞)B.[2C.[2


3
,+∞)
D.[2


3
,4]
题型:不详难度:| 查看答案
设OA是球O的半径,M是OA的中点,过M且与OA成450角的平面截球O的表面得到圆C,若圆C的面积等于
8
,则球O的半径等于______.
题型:不详难度:| 查看答案
如图,在正方体ABCD-A1B1C1D中,异面直线A1D与D1C所成的角为______度;直线A1D与平面AB1C1D所成的角为______度.
题型:不详难度:| 查看答案
已知四棱柱ABCD-A1B1C1D1,侧棱与底面垂直,底面ABCD是菱形且∠BAD=60°,侧棱与底面边长均为2,则面AB1C与底面A1B1C1D1,ABCD所成角的正弦值为(  )
A.
1
2
B.2C.


5
5
D.
2


5
5
题型:不详难度:| 查看答案
在正方体ABCD-A1B1C1D1中,直线AD1与平面ABCD所成的角的大小为______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.