已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;(2)在棱CC1上是否存在一个点E

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;(2)在棱CC1上是否存在一个点E

题型:不详难度:来源:
已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.
答案
(1)证明:连接AC,BD,设AC∩BD=O,连接A1O,OE,
在等边△A1BD中,BD⊥A1O,
∵BD⊥A1E,A1O⊂平面A1OE,A1O∩A1E=A1
∴BD⊥平面A1OE,
于是BD⊥OE,
∴∠A1OE是二面角A1-BD-E的平面角,
在正方体ABCD-A1B1C1D1中,设棱长为2a,
∵E是棱CC1的中点,
∴由平面几何知识,得EO=


3
a
A1O=


6
a
,A1E=3a,
满足A1E2=A1O2+EO2
∴∠A1OE=90°,即平面A1BD⊥平面EBD.
(2)在正方体ABCD-A1B1C1D1中,
假设棱CC1上存在点E,可以使二面角A1-BD-E的大小为45°,
由(1)知,∠A1OE=45°,
设正方体ABCD-A1B1C1D1的棱长为2a,EC=x,
由平面几何知识,得EO=


2a2+x2
A1O=


6
a
A1E=


8a2+(2a-x)2

∴在△A1OE中,由A1E2=A1O2+EO2-2A1O•EO•cos∠A1OE
得x2-8ax-2a2=0,
解得x=4a±3


2
a

4a+3


2
a>2a,4a-3


2
a<0

∴棱OC1上不存在满足条件的点.
举一反三
三棱锥A-BCD中,AB=AC=BC=CD=AD=a,要使三棱锥A-BCD的体积最大,则二面角B-AC-D的大小为(  )
A.
π
2
B.
π
3
C.
3
D.
π
6
题型:不详难度:| 查看答案
在棱长为a的正方体ABCD-A1B1C1D1中,E、F分别为棱AB和BC的中点,EF与BD交于点G.
(1)求二面角B1-EF-B的正切值;
(2)M为棱BB1上的一点,当
B1M
MB
的值为多少时能使D1M⊥平面EFB1?试给出证明.
题型:不详难度:| 查看答案
在四面体ABCD中,已知棱AC的长为


3
,其余各棱长都为2,则二面角A-BD-C的大小为______.
题型:不详难度:| 查看答案
正四面体的侧面与底面所成的二面角的余弦值为(  )
A.
1
3
B.
1
2
C.


3
2
D.


2
2
题型:不详难度:| 查看答案
将锐角∠QMN=60°,边长MN=a的菱形MNPQ沿对角线NQ折成60°的二面角,则MP与NQ间的距离等于(  )
A.


3
2
a
B.
3
4
a
C.


6
4
a
D.


3
4
a
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.