在△ABC中,∠B=90°,AC=152,D,E两点分别在AB,AC上.使ADDB=AEEC=2,DE=3.将△ABC沿DE折成直二面角,则二面角A-EC-B的

在△ABC中,∠B=90°,AC=152,D,E两点分别在AB,AC上.使ADDB=AEEC=2,DE=3.将△ABC沿DE折成直二面角,则二面角A-EC-B的

题型:不详难度:来源:
在△ABC中,∠B=90°,AC=
15
2
,D,E两点分别在AB,AC上.使
AD
DB
=
AE
EC
=2,DE=3.将△ABC沿DE折成直二面角,则二面角A-EC-B的余弦值为(  )
A.
3


22
22
B.
5


22
22
C.
3


34
34
D.
5


34
34
答案
AD
DB
=
AE
EC
=2,
∴DEBC,
又∵∠B=90°,
∴AD⊥DE.
∵A-DE-B是直二面角,AD⊥DE,故AD⊥底面DBCE,
过D作DF⊥CE,交CE的延长线于F,连接AF.
由三垂线定理知AF⊥FC,
故∠AFD为二面角A-EC-B的平面角.
在底面DBCE中,∠DEF=∠BCE,DB=2,EC=
5
2

∴sin∠BCE=
DB
EC
=
4
5

在Rt△DFE中,DE=3,
DF=DEsin∠DEF=DEsin∠BCE=
12
5

在Rt△AFD中,AD=4,cos∠AFD=
DF
AF
=
3


34
34

故选C
举一反三
若二面角α-l-β的大小为
π
3
,直线m⊥α,则β所在平面内的直线与m所成角的取值范围是(  )
A.(0,
π
2
)
B.[
π
3
π
2
]
C.[
π
6
π
2
]
D.[
π
6
3
]
题型:不详难度:| 查看答案
在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点F是棱C1D1的中点.
(I)若点E是棱CC1的中点,求证:EF平面A1BD;
(II)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.
题型:不详难度:| 查看答案
已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.
题型:不详难度:| 查看答案
三棱锥A-BCD中,AB=AC=BC=CD=AD=a,要使三棱锥A-BCD的体积最大,则二面角B-AC-D的大小为(  )
A.
π
2
B.
π
3
C.
3
D.
π
6
题型:不详难度:| 查看答案
在棱长为a的正方体ABCD-A1B1C1D1中,E、F分别为棱AB和BC的中点,EF与BD交于点G.
(1)求二面角B1-EF-B的正切值;
(2)M为棱BB1上的一点,当
B1M
MB
的值为多少时能使D1M⊥平面EFB1?试给出证明.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.