点P到点A(12,0),B(a,2)及直线x=-12的距离都相等,如果这样的点恰好只有一个,那么a的取值个数为(  )A.1个B.2个C.3个D.无数个

点P到点A(12,0),B(a,2)及直线x=-12的距离都相等,如果这样的点恰好只有一个,那么a的取值个数为(  )A.1个B.2个C.3个D.无数个

题型:不详难度:来源:
点P到点A(
1
2
,0),B(a,2)
及直线x=-
1
2
的距离都相等,如果这样的点恰好只有一个,那么a的取值个数为(  )
A.1个B.2个C.3个D.无数个
答案
平面上到点A(
1
2
,0)
及直线x=-
1
2
的距离都相等,
故点P的应该落在抛物线y2=2x上.
又由P到点A(
1
2
,0),B(a,2)
及直线x=-
1
2
的距离都相等,
有两种情况:一是线段AB的垂直平分线与抛物线相切,
一是线段AB的垂直平分线与抛物线的对称轴平行.
可得结果实数a的值为
1
2
或-
1
2

即满足条件的a的取值有2个
故选B
举一反三
已知M(x0,y0)为抛物线x2=8y上的动点,点N的坐标为(


21
,0),则y0+|


MN
|
的最小值是______.
题型:杭州二模难度:| 查看答案
在平面直角坐标系xOy中,以原点O为极点,Ox轴为极轴建立极坐标系,曲线C1的方程为





x=
1
tanϕ
y=
1
tan2ϕ
.
(φ为参数),曲线C2的极坐标方程为:ρ(cosθ+sinθ)=1,若曲线C1与C2相交于A、B两点. 
(I)求|AB|的值;  
(Ⅱ)求点M(-1,2)到A、B两点的距离之积.
题型:不详难度:| 查看答案
在直角坐标系中,圆C的参数方程为





x=2cosθ    
y=2+2sinθ
(θ为参数),则坐标原点到该圆的圆心的距离为______.
题型:东莞市二模难度:| 查看答案
设A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,BxB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y=3,且|△x|-|△y|≠0,则称点B为点A的“相关点”,记作:B=i(A).
(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;
(Ⅱ)已知点H(9,3),L(5,3),若点M满足M=i(H),L=i(M),求点M的坐标;
(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)为一个定点,点列{Pi}满足:Pi=i(Pi-1),其中i=1,2,3,…,n,求|P0Pn|的最小值.
题型:海淀区一模难度:| 查看答案
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为(x-2,x-y).
(1)求|OP|的最大值;
(2)求|OP|取得最大值时的概率.
题型:楚雄州模拟难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.