已知点和圆:.(Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程;(Ⅱ)试探究是否存在这样的点:是圆内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEM

已知点和圆:.(Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程;(Ⅱ)试探究是否存在这样的点:是圆内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEM

题型:不详难度:来源:
已知点和圆

(Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程;
(Ⅱ)试探究是否存在这样的点是圆内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEM的面积?若存在,求出点的坐标,若不存在,说明理由.
答案
(Ⅰ)方程为:;(Ⅱ).
解析

试题分析:(Ⅰ)当所求直线的斜率不存在时,弦长为,符合要求.此时直线方程为:;若斜率在时,可设直线的斜率为,根据点斜式写出直线方程,求出圆心到直线的距离,再由勾股定理得到:,解得;(Ⅱ)连结,求出圆与轴的两个交点.并连结,得到,因此要使,那么点必在经过点,且与直线平行的直线上.结合点所在象限,可以求出.
试题解析:(Ⅰ)当所求直线的斜率不存在时,弦长为,符合要求,此时
若直线的斜率存在时,设直线的斜率为,那么直线的方程为:.
所以圆心到直线的距离,又因为半径弦长为.
所以,解得:.
所以所求直线方程为:
(Ⅱ)连结,点满足,
作直线的平行线

∴直线的方程分别为:

设点 (

分别解,得 与
为偶数,在对应的
,对应的
∴满足条件的点存在,共有6个,它们的坐标分别为:

举一反三
如图,圆

(Ⅰ)若圆轴相切,求圆的方程;
(Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.
题型:不详难度:| 查看答案
已知点满足方程,则由点向圆所作的切线长的最小值是(    )
A.B.C.D.

题型:不详难度:| 查看答案
若圆上有且仅有一个点到直线的距离为,则半径的值是       
题型:不详难度:| 查看答案
已知点和圆

(Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程;
(Ⅱ)若的面积,且是圆内部第一、二象限的整点(平面内横、纵坐标均为整数
的点称为整点),求出点的坐标.
题型:不详难度:| 查看答案
两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线相切,则a的取值范围是(   )
A.B.
C.-3≤a≤一≤a≤7D.a≥7或a≤—3

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.