已知定点,,直线(为常数). (1)若点、到直线的距离相等,求实数的值;(2)对于上任意一点,恒为锐角,求实数的取值范围.

已知定点,,直线(为常数). (1)若点、到直线的距离相等,求实数的值;(2)对于上任意一点,恒为锐角,求实数的取值范围.

题型:不详难度:来源:
已知定点,直线(为常数).
(1)若点到直线的距离相等,求实数的值;
(2)对于上任意一点恒为锐角,求实数的取值范围.
答案
(1) 的值为1或.(2)或k>1.
解析

试题分析:(1)根据点M,N到直线l的距离相等,可得l∥MN或l过MN的中点.
按l∥MN、l过MN的中点讨论得到的值为1或.
本题难度不大,但易于出现漏解现象.
(2)根据∠MPN恒为锐角,得知l与以MN为直径的圆相离,即圆心到直线l的距离大于半径,从而建立的不等式而得解.
试题解析:(1)∵点M,N到直线l的距离相等,
∴l∥MN或l过MN的中点.
∵M(0,2),N(-2,0),
,MN的中点坐标为C(-1,1).
又∵直线过点D(2,2),
当l∥MN时,=kMN=1,
当l过MN的中点时,,
综上可知:的值为1或.
(2)∵对于l上任意一点P,∠MPN恒为锐角,
∴l与以MN为直径的圆相离,即圆心到直线l的距离大于半径,
解得:或k>1.
举一反三
已知圆及直线. 当直线被圆截得的弦长为时, 求(1)的值; (2)求过点并与圆相切的切线方程.
题型:不详难度:| 查看答案
如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L⊥直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。
试建立适当的直角坐标系,解决下列问题:

(1)若∠PAB=30°,求以MN为直径的圆方程;
(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。
题型:不详难度:| 查看答案
直线y=2x+3被圆x2+y2-6x-8y=0所截得的弦长等于    
题型:不详难度:| 查看答案
已知圆的圆心在点,点,求;
(1)过点的圆的切线方程;
(2)点是坐标原点,连结,求的面积
题型:不详难度:| 查看答案
已知圆,直线 与圆交与两点,点.
(1)当时,求的值;
(2)当时,求的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.