已知椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1和F2,由4个点M(-a,b)、N(a,b)、F2和F1组成了一个高为3,面积为33的等腰梯形.

已知椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1和F2,由4个点M(-a,b)、N(a,b)、F2和F1组成了一个高为3,面积为33的等腰梯形.

题型:济南一模难度:来源:
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1和F2,由4个点M(-a,b)、N(a,b)、F2和F1组成了一个高为


3
,面积为3


3
的等腰梯形.
(1)求椭圆的方程;
(2)过点F1的直线和椭圆交于两点A、B,求△F2AB面积的最大值.
答案
(1)由题意知b=


3
1
2
(2a+2c)b
=3


3
,所以a+c=3①,
又a2=b2+c2,即a2=3+c2②,
联立①②解得a=2,c=1,
所以椭圆方程为:
x2
4
+
y2
3
=1

(2)由(1)知F1(-1,0),
设A(x1,y1),B(x2,y2),过点F1的直线方程为x=ky-1,





x=ky-1
x2
4
+
y2
3
=1
得(3k2+4)y2-6ky-9=0,△>0成立,
y1+y2=
6k
3k2+4
y1y2=
-9
3k2+4

△F2AB的面积S=
1
2
×|F1F2|(|y1|+|y2|)
=|y1-y2|=


(y1+y2)2-4y1y2

=


36k2
(3k2+4)2
+
36
3k2+4
=12


k2+1
(3k2+4)2
=
12


9(k2+1)+
1
k2+1
+6

又k2≥0,所以9(k2+1)+
1
k2+1
+6
递增,
所以9(k2+1)+
1
k2+1
+6≥
9+1+6=16,
所以
12


9(k2+1)+
1
k2+1
+6
12


16
=3,当且仅当k=0时取得等号,
所以△F2AB面积的最大值为3.
举一反三
焦点分别为F1,F2的椭圆C2
x2
a2
+
y2
b2
=1
过点M(2,1),抛物线y2=4


3x
的准线过椭圆C的左焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)不过M的动直线l交椭圆C于A、B两点,若


MA


MB
=0,求证:直线l恒过定点,并求出该定点的坐标.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为


2
2
,连接椭圆的四个顶点得到的菱形的面积为2


2

(1)求椭圆C的方程;
(2)若过点(2,0)的直线l的与椭圆C交于A、B两点,O为坐标原点,当∠AOB为锐角时,求直线l的斜率k的取值范围.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
3
=1(a>


10
)的右焦点F在圆D:(x-2)2+y2=1上,直线l:x=my+3(m≠0)交椭圆于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点N关于x轴的对称点为N1,且直线N1M与x轴交于点P,试问△PMN的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为


3
2
,左、右端点分别为A1(-2,0),A2(2,0)
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆上存在两点A和B关于直线y=2x+m对称,求实数m的范围.
题型:不详难度:| 查看答案
已知椭圆G经过点P(


3
1
2
)
,且一个焦点为(-


3
,0)
.过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点.
(Ⅰ)求椭圆G的方程;
(Ⅱ)将|AB|表示为m的函数,并求|AB|的最大值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.