椭圆(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点(0,3)到椭圆上的点的最远距离为5,则此椭圆的方程是(

椭圆(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点(0,3)到椭圆上的点的最远距离为5,则此椭圆的方程是(

题型:不详难度:来源:
椭圆(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点(0,3)到椭圆上的点的最远距离为5则此椭圆的方程是(  )
答案
举一反三
A.B.
C.D.
设α∈(0,),方程=1表示焦点在x轴上的椭圆,则α∈(  )A
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.B.(C.(0,
D.[
P为椭圆
x2
25
+
y2
9
=1
上一点,F1、F2为左右焦点,若∠F1PF2=60°
(1)求△F1PF2的面积;
(2)求P点的坐标.
已知焦点在x轴上,对称轴为坐标轴的椭圆的离心率为
1
2
,且以该椭圆上的点和椭圆的两焦点F1,F2为顶点的三角形的周长为6,
(1)求椭圆的标准方程;
(2)设过点N(1,0)斜率为k直线l与椭圆相交与A、B两点,若-
18
7


NA


NB
≤-
12
5
,求直线l斜率k的取值范围.
经过点P(-3,0),Q(0,-2)的椭圆的标准方程是______.
已知椭圆的两焦点为F1(-


3
,0), F2(


3
,0)
,P为椭圆上一点,且|PF1|+|PF2|=4
(1)求此椭圆方程.
(2)若F1PF2=
π
3
,求△F1PF2的面积(要有详细的解题过程)