在△ABC中,A、B为定点,C为动点,记∠A、∠B、∠C的对边分别为a、b、c,已知c=2,且存在常数λ(λ>0),使得abcos2C2=λ.(1)求动点C的轨

在△ABC中,A、B为定点,C为动点,记∠A、∠B、∠C的对边分别为a、b、c,已知c=2,且存在常数λ(λ>0),使得abcos2C2=λ.(1)求动点C的轨

题型:闸北区二模难度:来源:
在△ABC中,A、B为定点,C为动点,记∠A、∠B、∠C的对边分别为a、b、c,已知c=2,且存在常数λ
(λ>0),使得abcos2
C
2

(1)求动点C的轨迹,并求其标准方程;
(2)设点O为坐标原点,过点B作直线l与(1)中的曲线交于M,N两点,若OM⊥ON,试确定λ的范围.
答案
(1)在△PAB中,由余弦定理,有22=a2+b2-2abcosC,|a+b|=


4+2ab(1+cosC)
=2


1+abcos2
C
2
=2


1+λ
>2

所以,点P的轨迹C是以A,B为焦点,长轴长2a=2


1+λ
的椭圆.(除去长轴上的顶点)
如图,以A、B所在的直线为x轴,以A、B的中点为坐标原点建立直角坐标系.
则,A(-1,0)和B(1,0).
椭圆C的标准方程为:
x2
1+λ
+
y2
λ
=1
(y≠0).
(2)设M(x1,y1),N(x2,y2),
①当MN垂直于x轴时,MN的方程为x=1,由题意,有M(1,1),N(1,-1)在椭圆上.
1
1+λ
+
1
λ
=1⇒λ=


5
2
,由λ>0,得λ=
1+


5
2

②当MN不垂直于x轴时,设MN的方程为y=k(x-1).





x2
1+λ
+
y2
λ
=1
y=k(x-1)
得:[λ+(1+λ)k2]x2-2(1+λ)k2x+(1+λ)(k2-λ)=0,
由题意知:λ+(1+λ)k2>0,
所以x1+x2=
2(1+λ)k2
λ+(1+λ)k2
x1x2=
(1+λ)(k2-λ)
λ+(1+λ)k2

于是:y1y2=k2(x1-1)(x2-1)=k2[x1x2-(x1+x2)+1]=
-λ2k2
λ+(1+λ)k2

因为OM⊥ON,所以


OM


ON
=0

所以x1x2+y1y2=
(1+λ-λ2)k2-λ2
λ+(1+λ)k2
=0

所以,k2=
λ2
1+λ-λ2
≥0

由λ>0得1+λ-λ2>0,解得0<λ<
1+


5
2

综合①②得:0<λ≤
1+


5
2
举一反三
已知关于坐标轴对称的椭圆经过两点A(0,2)和B(
1
2


3
)

(1)求椭圆的标准方程
(2)若点P是椭圆上的一点,F1和F2是焦点,且∠F1PF2=30°,求△F1PF2的面积、
题型:不详难度:| 查看答案
设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(


2
,1)
,且左焦点为F1(-


2
,0)

(Ⅰ)求椭圆C的方程;
(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交与两不同点A,B时,在线段AB上取点Q,满足|


AP
|
|


QB
|
=|


AQ
|
|


PB
|
,证明:点Q总在某定直线上.
题型:安徽难度:| 查看答案
已知椭圆C1的中心和抛物线C2的顶点都在坐标原点O,C1和C2有公共焦点F,点F在x轴正半轴上,且C1的长轴长、短轴长及点F到C1右准线的距离成等比数列.
(Ⅰ)当C2的准线与C1右准线间的距离为15时,求C1及C2的方程;
(Ⅱ)设点F且斜率为1的直线l交C1于P,Q两点,交C2于M,N两点.当|PQ|=
36
7
时,求|MN|的值.
题型:四川难度:| 查看答案
如图,设F是椭圆:C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|.
(1)求椭圆C的标准方程;
(2)若过点P的直线与椭圆相交于不同两点A,B,求证:∠AFM=∠BFN;
(3)(理)求三角形ABF面积的最大值.
题型:宿松县三模难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为


3
2
,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=


15
2


PF1


PF2
=
3
4
,其中O为坐标原点.Q为椭圆的左顶点.
(1)求椭圆C的方程;
(2)过点S(-
6
5
,0),且斜率为k的动直线l交椭圆于A、B两点,是否存在直线l,使得VQAB为等腰三角形?若存在,求出直线l的方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.