已知A(1,1)是椭圆(a>b>0)上一点,F1、F2是椭圆的两焦点,且满足|AF1|+|AF2|=4。(1)求椭圆的标准方程;(2)设点C、D是椭圆上两点,直

已知A(1,1)是椭圆(a>b>0)上一点,F1、F2是椭圆的两焦点,且满足|AF1|+|AF2|=4。(1)求椭圆的标准方程;(2)设点C、D是椭圆上两点,直

题型:北京模拟题难度:来源:
已知A(1,1)是椭圆(a>b>0)上一点,F1、F2是椭圆的两焦点,且满足|AF1|+|AF2|=4。
(1)求椭圆的标准方程;
(2)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,求直线CD的斜率。
答案
解:(1)由椭圆定义知
所以a=2
即椭圆方程为  ①
把A(1,1)代入①式得
所以得
所以椭圆的标准方程为
(2)由题意知,直线AC的倾斜角不为90°,故设直线AC的方程为y=k(x-1)+1
联立方程得
消去y得
∵点A(1,1)、点C在椭圆上

∵直线AC、AD的倾斜角互补,
∴直线AD的方程为y=-k(x-1)+1,
同理




∴直线CD的斜率为
举一反三
椭圆与直线x+y-1=0相交于A、B两点,且OA⊥OB(O为坐标原点),
(1)求椭圆E与圆x2+y2=1的交点坐标;
(2)当|AB|=时,求椭圆E的方程。
题型:模拟题难度:| 查看答案
已知椭圆C:(a>b>0)的离心率是e=,若点P(0,)到椭圆C上的点的最远距离为
(1)求椭圆C的方程;
(2)过椭圆C的左焦点F1作直线l交椭圆C于点A,B,且|AB|等于椭圆的短轴长,求直线l的方程。
题型:山东省模拟题难度:| 查看答案
已知F1、F2分别是椭圆(a>b>0)的左、右焦点,已知点N(-,0)满足,设A、B是上半椭圆上满足的两点。
(1)求此椭圆的方程;
(2)若λ=,求直线AB的斜率。
题型:湖北省模拟题难度:| 查看答案
已知A、B是圆x2+y2=4上满足条件的两个点,其中O是坐标原点,分别过A、B作x轴的垂线段,交椭圆x2+4y2=4于A1、B1点,动点P满足
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设S1和S2分别表示△PAB和△B1A1A的面积,当点P在x轴的上方,点A在x轴的下方时,求S1+S2的最大值。
题型:吉林省模拟题难度:| 查看答案
已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点(-1,),过点P(2,1)的直线l与椭圆C在第一象限相切于点M,
(1)求椭圆C的方程;
(2)求直线l的方程以及点M的坐标;
(3)是否存过点P的直线l1与椭圆C相交于不同的两点A、B,满足?若存在,求出直线l1的方程;若不存在,请说明理由.
题型:0107 模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.