已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为-1,离心率e=, (Ⅰ)求椭圆E的方程;(Ⅱ)过点(1,0)作直线交E于P、Q两点,试问

已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为-1,离心率e=, (Ⅰ)求椭圆E的方程;(Ⅱ)过点(1,0)作直线交E于P、Q两点,试问

题型:北京模拟题难度:来源:
已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为-1,离心率e=
(Ⅰ)求椭圆E的方程;
(Ⅱ)过点(1,0)作直线交E于P、Q两点,试问在x轴上是否存在一定点M,使为定值?若存在,求出定点M的坐标;若不存在,请说明理由.
答案
解:(1)
∴所求椭圆E的方程为:
(2)当直线l不与x轴重合时,可设直线l的方程为:x=ky+1,

把(2)代入(1)整理得:,(3)

假设存在定点M(m,0),使得为定值,

=



当且仅当5-4m=0,即时,(为定值).这时
再验证当直线l的倾斜角α=0时的情形,此时取


∴存在定点使得对于经过(1,0)点的任意一条直线l 均有(恒为定值).
举一反三
已知椭圆C:(a>b>0)的离心率为,其左、右焦点分别是F1、F2,点P是坐标平面内的一点,且|OP|=·=(点O为坐标原点)。
(1)求椭圆C的方程;
(2)直线y=x与椭圆C在第一象限交于A点,若椭圆C上两点M、N使+,λ∈(0,2)求△OMN面积的最大值。
题型:河南省模拟题难度:| 查看答案
已知椭圆M:(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+4
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M交于A,B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.
题型:北京模拟题难度:| 查看答案
已知F1,F2是椭圆(a>b>0)的左、右焦点,点P(-1,)在椭圆上,线段PF2与y轴的交点M满足
(1)求椭圆的标准方程;
(2)过F1作不与x轴重合的直线l,l与圆x2+y2=a2+b2相交于A、B。并与椭圆相交于C、D,当=λ,且λ∈[,1]时,求△F2CD的面积S的取值范围。
题型:0103 模拟题难度:| 查看答案
已知椭圆C:(a>1)的上顶点为A,右焦点为F,直线AF与圆M:(x-3)2+(y-1)2=3相切。
(1)求椭圆C的方程;
(2)若不过点A的动直线l与椭圆C交于P,Q两点,且,求证:直线l过定点,并求出该定点的坐标。
题型:广西自治区模拟题难度:| 查看答案
已知椭圆C:(a>b>0)的离心率为,其左、右焦点分别为F1,F2,点P是坐标平面内一点,且|OP|=(O为坐标原点)。
(1)求椭圆C的方程;
(2)过点S(0,-)且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标;若不存在,说明理由。
题型:0120 模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.