已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线y2=的焦点.PQ过椭圆焦点且PQ⊥x轴,A、B是椭圆位于直线PQ两侧的两动点.(1)

已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线y2=的焦点.PQ过椭圆焦点且PQ⊥x轴,A、B是椭圆位于直线PQ两侧的两动点.(1)

题型:期末题难度:来源:
已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线y2=的焦点.PQ过椭圆焦点且PQ⊥x轴,A、B是椭圆位于直线PQ两侧的两动点.
(1)求椭圆C的方程;
(2)若直线AB的斜率为1,求四边形APBQ面积的最大值;
(3)当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
答案
解:(1)设椭圆C的方程为
∵椭圆的一个顶点恰好是抛物线y2=的焦点,
∴a=
∵离心率等于

∴c=1∴b=1
∴椭圆C的方程为
(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=x+t,
代入椭圆方程,消元可得3x2+4tx+2t2﹣2=0
由△>0,解得﹣<t<
由韦达定理得x1+x2=﹣t,x1x2=
∵PQ过椭圆焦点且PQ⊥x轴,
∴|PQ|=
∴四边形APBQ的面积S=××|x1﹣x2|=×
∴t=0时,Smax=
(3)当∠APQ=∠BPQ,则PA、PB的斜率之和为0,
设直线PA的斜率为k,则PB的斜率为﹣k,
PA的直线方程为y﹣=k(x﹣1),
与椭圆方程联立,消元可得(1+2k2)x2+(2k﹣4k2)x+k2﹣2k﹣1=0
∴x1+1=﹣
同理x2+1=﹣
∴x1+x2=,x1﹣x2=﹣
∴y1﹣y2=k(x1+x2)﹣2k=,x1﹣x2=﹣

∴直线AB的斜率为定值
举一反三
已知点A(-2,0)在椭圆上,设椭圆E与y轴正半轴的交点为B,其左焦点为F,且∠AFB=150°.
(1)求椭圆E的方程;
(2)过x轴上一点M(m,0)(m≠-2)作一条不垂直于y轴的直线l交椭圆E于C、D点.
(i)若以CD为直径的圆恒过A点,求实数m的值;
(ii)若△ACD的重心恒在y轴的左侧,求实数m的取值范围.
题型:月考题难度:| 查看答案
已知椭圆,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率。
(1)求椭圆C2的方程;
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,,求直线AB的方程。
题型:高考真题难度:| 查看答案
若直线ax+by+4=0和圆x2+y2=4没有公共点,则过点(a,b)的直线与椭圆 +=1的公共点个数为    [     ]
A.0
B.1  
C.2
D.需根据a,b的取值来确定
题型:期末题难度:| 查看答案
如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0)。已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率。
(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P。
(i)若AF1-BF2=,求直线AF1的斜率;
(ii)求证:PF1+PF2是定值。
题型:高考真题难度:| 查看答案
如图已知椭圆(a>b>0)的离心率为,且过点A(0,1).
(1)求椭圆的方程;
(2)过点A作两条互相垂直的直线分别交椭圆于M,N两点.求证:直线MN恒过定点P(0,﹣).
题型:期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.