如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=,过F1的直线交椭圆于A、B两点,且△ABF2的周长为8。(1)求椭圆E的方程。(2)设动直线l:y=kx

如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=,过F1的直线交椭圆于A、B两点,且△ABF2的周长为8。(1)求椭圆E的方程。(2)设动直线l:y=kx

题型:高考真题难度:来源:
如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=,过F1的直线交椭圆于A、B两点,且△ABF2的周长为8。
(1)求椭圆E的方程。
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q,试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
答案
解:(1)∵过F1的直线交椭圆于A、B两点,且△ABF2的周长为8
∴4a=8,
∴a=2
∵e= ,
∴c=1
∴b2=a2-c2=3
∴椭圆E的方程为 
(2)由,消元可得(4k2+3)x2+8kmx+4m2-12=0
∵动直线l:y=kx+m与椭圆E有且只有一个公共点P(x0,y0
∴m≠0,△=0,
∴(8km)2-4×(4k2+3)×(4m2-12)=0
∴4k2-m2+3=0①
此时x0==,y0=
即P(
得Q(4,4k+m)
取k=0,m=,此时P(0,),Q(4,),
以PQ为直径的圆为(x-2)2+(y-2=4,交x轴于点M1(1,0)或M2(3,0)
取k=,m=2,此时P(1,),Q(4,0),
以PQ为直径的圆为(x-2+(y-2=,交x轴于点M3(1,0)或M4(4,0)
故若满足条件的点M存在,只能是M(1,0),
证明如下∵

故以PQ为直径的圆恒过y轴上的定点M(1,0)。
举一反三
设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足|DM|=m|DA|(m>0,且m≠1),当点A在圆上运动时,记点M的轨迹为曲线C。
(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
(2)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由。
题型:高考真题难度:| 查看答案
如图,在△ABC中,,以B、C为焦点的椭圆恰好过AC的中点P.(1)求椭圆的标准方程;
(2)过椭圆的右顶点A1作直线l与圆E:(x﹣1)+y2=2相交于M、N两点,
试探究点M、N能将圆E分割成弧长比值为1:3的两段弧吗?若能,求出直线l的方程;
若不能,请说明理由.
题型:江苏省月考题难度:| 查看答案
已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线y2=的焦点.PQ过椭圆焦点且PQ⊥x轴,A、B是椭圆位于直线PQ两侧的两动点.
(1)求椭圆C的方程;
(2)若直线AB的斜率为1,求四边形APBQ面积的最大值;
(3)当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
题型:期末题难度:| 查看答案
已知点A(-2,0)在椭圆上,设椭圆E与y轴正半轴的交点为B,其左焦点为F,且∠AFB=150°.
(1)求椭圆E的方程;
(2)过x轴上一点M(m,0)(m≠-2)作一条不垂直于y轴的直线l交椭圆E于C、D点.
(i)若以CD为直径的圆恒过A点,求实数m的值;
(ii)若△ACD的重心恒在y轴的左侧,求实数m的取值范围.
题型:月考题难度:| 查看答案
已知椭圆,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率。
(1)求椭圆C2的方程;
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,,求直线AB的方程。
题型:高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.