焦点分别为(0,5)和(0,﹣5)的椭圆截直线y=3x﹣2所得椭圆的弦的中点的横坐标为,求此椭圆方程.

焦点分别为(0,5)和(0,﹣5)的椭圆截直线y=3x﹣2所得椭圆的弦的中点的横坐标为,求此椭圆方程.

题型:江西省月考题难度:来源:
焦点分别为(0,5)和(0,﹣5)的椭圆截直线y=3x﹣2所得椭圆的弦的中点的横坐标为,求此椭圆方程.
答案

解:由题意可设椭圆方程为(a>b>0),
∵c=5
∴a2﹣b2=50   ①
把直线方程y=3x﹣2代入椭圆方程整理得(a2+9b2)x2﹣12b2x+b2(4﹣a2)=0.
设弦的两个端点为A(x1,y1),B(x2,y2),则由根与系数的关系可得,

由中点坐标公式可得,
∴a2=3b2  
联立①②可得,a2=75,b2=25
∴椭圆方程为

举一反三
已知椭圆C:+=1(a>b>0)经过点A(1,),且离心率e=.(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(﹣1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.
题型:江西省月考题难度:| 查看答案
已知F是椭圆的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为,点B在x轴上,AB⊥AF,A,B,F三点确定的圆C恰好与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过F作斜率为k(k≠0)的直线l交椭圆于M,N两点,P为线段MN的中点,设O为椭圆中心,射线OP交椭圆于点Q,若,若存在求k的值,若不存在则说明理由.
题型:天津月考题难度:| 查看答案
已知椭圆+=1(a>b>0)的离心率为,以原点为圆心,椭圆短轴长为半径的圆与y=x+2相切.
(1)求a与b;
(2)设该椭圆的左、右焦点分别为F1和F2,直线 l 过F2且与x轴垂直,动直线 l2 与 y 轴垂直,l2交 l1 于点 P.求PF1线段垂直平分线与l2的交点M的轨迹方程,并说明曲线类型.
题型:新疆自治区月考题难度:| 查看答案
直线x+2y﹣2=0经过椭圆+=1(a>b>0)的一个焦点和一个顶点,则该椭圆的离心率等于(    )
题型:河南省期末题难度:| 查看答案
已知椭圆的两个焦点,过F1且与坐标轴不平行的直线l与椭圆相交于M,N两点,如果△MNF2的周长等于8.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(1,0)的直线l与椭圆交于不同两点P、Q,试问在x轴上是否存在定点E(m,0),使恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.
题型:河南省期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.