已知点F1,F2分别为椭圆C:(a>b>0)的左、右焦点,点P为椭圆上任意一点,P到焦点F2的距离的最大值为+1,且△PF1F2的最大面积为1。 (

已知点F1,F2分别为椭圆C:(a>b>0)的左、右焦点,点P为椭圆上任意一点,P到焦点F2的距离的最大值为+1,且△PF1F2的最大面积为1。 (

题型:山东省期中题难度:来源:
已知点F1,F2分别为椭圆C:(a>b>0)的左、右焦点,点P为椭圆上任意一点,P到焦点F2的距离的最大值为+1,且△PF1F2的最大面积为1。
(1)求椭圆C的方程。
(2)点M的坐标为,过点F2且斜率为k的直线L与椭圆C相交于A,B两点。对于任意的k∈R,是否为定值?若是求出这个定值;若不是说明理由。 
答案
解:(1)由题意可知:a+c=+1 ,×2c×b=1,
有∵a2=b2+c2
∴a2=2,b2=1,c2=1,
∴所求椭圆的方程为:
(2)设直线l的方程为:y=k(x-1),
A(x1,y1) ,B(x2,y2),M(,0)
联立消去y得:





∴对任意x∈R,有为定值。
举一反三
椭圆的两个焦点分别为F1(0,-2),F2(0,2),离心率e=
(Ⅰ)求椭圆方程;
(Ⅱ)一条不与坐标轴平行的直线l与椭圆交于不同的两点M、N,且线段MN中点的横坐标为-,求直线l倾斜角的取值范围。
题型:广东省月考题难度:| 查看答案
已知焦点在x轴上的椭圆C过点(0,1),且离心率为,Q为椭圆C的左顶点。
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知过点(,0)的直线l与椭圆C交于A,B两点。
(ⅰ)若直线了l垂直于x轴,求∠AQB的大小;
(ⅱ)若直线l与x轴不垂直,是否存在直线l使得△QAB为等腰三角形?如果存在,求出直线l的方程;如果不存在,请说明理由。
题型:浙江省模拟题难度:| 查看答案
已知椭圆C:=1(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上,
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,试问直线l是否过定点?若过,求该定点的坐标。
题型:模拟题难度:| 查看答案
已知椭圆E:的左焦点F1,0),若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F。
(Ⅰ)求椭圆E的方程;
(Ⅱ)已知两点Q(-2,0),M(0,1)及椭圆G:,过点Q作斜率为k的直线l交椭圆G于H,K两点,设线段HK的中点为N,连结MN,试问当k为何值时,直线MN过椭圆G的顶点?
(Ⅲ)过坐标原点O的直线交椭圆W:于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC并延长交椭圆W于B,求证:PA⊥PB。
题型:山东省模拟题难度:| 查看答案
已知椭圆的一个顶点为A(0,-1),焦点在x轴上,中心在原点。若右焦点到直线x-y+2=0的距离为3,
(1)求椭圆的标准方程;
(2)设直线y=kx+m(k≠0)与椭圆相交于不同的两点M,N,当|AM|=|AN|时,求m的取值范围。
题型:广东省模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.