如图,已知椭圆C的方程为+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在

如图,已知椭圆C的方程为+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在

题型:不详难度:来源:
如图,已知椭圆C的方程为+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.

(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,并说明理由.
答案
(1)见解析(2)△OMN的面积为定值1
解析
(1)证明:易知A(2,1),B(-2,1).设P(x0,y0),则=1.由=m+n,得所以+(m+n)2=1,即m2+n2,故点Q(m,n)在定圆x2+y2上.
(2)解:(解法1)设M(x1,y1),N(x2,y2),则,平方得=16=(4-)(4-),即=4.因为直线MN的方程为(y1-y2)x-(x1-x2)y+x1y2-x2y1=0,所以O到直线MN的距离为d=,所以△OMN的面积S=MN·d=|x1y2-x2y1|==1,故△OMN的面积为定值1.
(解法2)设OM的方程为y=kx(k>0),则ON的方程为y=-x(k>0).联立方程组解得M.同理可得N
因为点N到直线OM的距离为d=,OM==2,所以△OMN的面积S=d·OM==1,故△OMN的面积为定值.
举一反三
如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.

题型:不详难度:| 查看答案
已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A、B.
(1)若AB=,求k的值;
(2)求证:不论k取何值,以AB为直径的圆恒过点M.
题型:不详难度:| 查看答案
已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,

过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
题型:不详难度:| 查看答案
以双曲线-3x2+y2=12的焦点为顶点,顶点为焦点的椭圆的方程是________.
题型:不详难度:| 查看答案
已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足≤1,则PF1+PF2的取值范围为________.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.