(本小题满分12分)如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8. (Ⅰ)求椭圆M的标准方程;(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD

(本小题满分12分)如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8. (Ⅰ)求椭圆M的标准方程;(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD

题型:不详难度:来源:
(本小题满分12分)如图,椭圆的离心率为,直线所围成的矩形ABCD的面积为8.
 
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.
答案
(I) .(II) 时,取得最大值.
解析

试题分析:(1)根据已知中的离心率和矩形的面积得到a,b,c的方程,进而求解椭圆方程。
(2)将已知中的直线方程与椭圆方程联立方程组,结合韦达定理得到根与系数的关系,那么得到弦长公式,同时以及得到点S,T的坐标,进而得到比值。
(I)……①
矩形ABCD面积为8,即……②
由①②解得:, ∴椭圆M的标准方程是.
(II)
,则
  .
时,有

其中,由此知当,即时,取得最大值.
点评:解决该试题的关键是运用代数的方法来解决解析几何问题时,解析几何的本质。能结合椭圆的性质得到其方程,并联立方程组,结合韦达定理和判别式的到比值。
举一反三
已知点在椭圆上,则的最大值为(    )
A.B.-1C.2D.7

题型:不详难度:| 查看答案
椭圆的左右焦点分别为,过焦点的直线交该椭圆于两点,若的内切圆面积为两点的坐标分别为,则的值为           
题型:不详难度:| 查看答案
已知椭圆,左右焦点分别为
(1)若上一点满足,求的面积;
(2)直线于点,线段的中点为,求直线的方程。
题型:不详难度:| 查看答案
已知离心率为的椭圆过点为坐标原点,平行于的直线交椭圆于不同的两点

(1)求椭圆的方程。
(2)证明:若直线的斜率分别为,求证:+=0。
题型:不详难度:| 查看答案
直线与椭圆相交于两点,该椭圆上点使的面积等于6,这样的点共有(   )
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.