(本小题满分14分)设上的两点,满足,椭圆的离心率短轴长为2,0为坐标原点.(1)求椭圆的方程;(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不

(本小题满分14分)设上的两点,满足,椭圆的离心率短轴长为2,0为坐标原点.(1)求椭圆的方程;(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不

题型:不详难度:来源:
(本小题满分14分)
上的两点,
满足,椭圆的离心率短轴长为2,0为坐标原点.
(1)求椭圆的方程;
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
答案
解:(1)
故椭圆的方程为   ……………………… 4分
(2)
①当直线的斜率不存在时, 由于不妨设,


此时,                  ……………………… 6分
②当直线的斜率存在时, 设的方程为,

得到              ……………………… 8分

代入:

 
……………………… 13分
所以三角形的面积为定值.                              ……………………… 14分
解析

举一反三
.(本题14分)过点的椭圆)的离心率为,椭圆与轴的交于两点),),过点的直线与椭圆交于另一点,并与轴交于点,直线与直线叫与点
(I)当直线过椭圆右交点时,求线段的长;
(II)当点异于两点时,求证:为定值.

题型:不详难度:| 查看答案
,的长轴是短轴的2倍,则m=       
题型:不详难度:| 查看答案
.已知抛物线的准线为,焦点为F,的圆心在轴的正半轴上,且与轴相切,过原点O作倾斜角为的直线,交于点A,交于另一点B,且AO=OB=2.
(1)求和抛物线C的方程;
(2)若P为抛物线C上的动点,求的最小值;
(3)过上的动点Q向作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.

题型:不详难度:| 查看答案
(本小题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到
两个焦点的距离之和为,离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右焦点分别为,过点的直线与该椭圆交于点,
为邻边作平行四边形,求该平行四边形对角线的长度
的最大值.
题型:不详难度:| 查看答案
..(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分.
已知椭圆上有一个顶点到两个焦点之间的距离分别为
(1)求椭圆的方程;
(2)如果直线与椭圆相交于,若,证明直线与直线的交点必在一条确定的双曲线上;
(3)过点作直线(与轴不垂直)与椭圆交于两点,与轴交于点,若,证明:为定值。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.