已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为1.(Ⅰ)求椭圆的方程;(Ⅱ)设点在抛物线:上,在点处的切线与交于点.线段的中点与的中点的横坐标相等时,求的最小

已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为1.(Ⅰ)求椭圆的方程;(Ⅱ)设点在抛物线:上,在点处的切线与交于点.线段的中点与的中点的横坐标相等时,求的最小

题型:不详难度:来源:
已知椭圆的右顶点为,过的焦点且垂直长轴的弦长为1.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在抛物线上,在点处的切线与交于点.线段的中点与的中点的横坐标相等时,求的最小值.
答案

的最小值为1.
解析

(I) 由题意得所求的椭圆方程为,高&考%资(源#网   
(II)不妨设则抛物线在点P处的切线斜率为,直线MN的方程为,将上式代入椭圆的方程中,得,即,因为直线MN与椭圆有两个不同的交点,
所以有
设线段MN的中点的横坐标是,则,高&考%资(源#网   
设线段PA的中点的横坐标是,则,由题意得,即有,其中的
时有
因此不等式不成立;因此
时代入方程,将代入不等式成立,因此的最小值为1.
举一反三
已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点,过点P(2,1)的直线与椭圆C在第一象限相切于点M .
(1)求椭圆C的方程;
(2)求直线的方程以及点M的坐标;
(3)是否存过点P的直线与椭圆C相交于不同的两点A、B,满足?若存在,求出直线l1的方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知椭圆的两个焦点为在椭圆上,且
.
(1)求椭圆方程;
(2)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程.
题型:不详难度:| 查看答案
设椭圆M(ab>0)的离心率为,长轴长为,设过右焦点F
斜角为的直线交椭圆MAB两点。
(Ⅰ)求椭圆M的方程;
(2)设过右焦点F且与直线AB垂直的直线交椭圆MCD,求|AB| + |CD|的最小
值。
题型:不详难度:| 查看答案
椭圆满足,离心率为,则的最大值是_______.
题型:不详难度:| 查看答案
已知椭圆:上一点及其焦点满足

⑴求椭圆的标准方程。
⑵如图,过焦点F2作两条互相垂直的弦AB,CD,设弦AB,CD的中点分别为M,N。
①线段MN是否恒过一个定点?如果经过定点,试求出它的坐标,如果不经过定点,试说明理由;
②求分别以AB,CD为直径的两圆公共弦中点的轨迹方程。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.