已知椭圆的两个焦点为,在椭圆上,且.(1)求椭圆方程;(2)若直线过圆的圆心,交椭圆于两点,且关于点对称,求直线的方程.

已知椭圆的两个焦点为,在椭圆上,且.(1)求椭圆方程;(2)若直线过圆的圆心,交椭圆于两点,且关于点对称,求直线的方程.

题型:不详难度:来源:
已知椭圆的两个焦点为在椭圆上,且
.
(1)求椭圆方程;
(2)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程.
答案
椭圆
解析

解:(1),,
,
,  
.        …………4分
所以椭圆.…………6分
(2)设,
,
.   …………9分
又因圆的方程为,所以 (-3,1),又因关于点对称,
的中点,
,
,
.…………12分
,即.…………14分
举一反三
设椭圆M(ab>0)的离心率为,长轴长为,设过右焦点F
斜角为的直线交椭圆MAB两点。
(Ⅰ)求椭圆M的方程;
(2)设过右焦点F且与直线AB垂直的直线交椭圆MCD,求|AB| + |CD|的最小
值。
题型:不详难度:| 查看答案
椭圆满足,离心率为,则的最大值是_______.
题型:不详难度:| 查看答案
已知椭圆:上一点及其焦点满足

⑴求椭圆的标准方程。
⑵如图,过焦点F2作两条互相垂直的弦AB,CD,设弦AB,CD的中点分别为M,N。
①线段MN是否恒过一个定点?如果经过定点,试求出它的坐标,如果不经过定点,试说明理由;
②求分别以AB,CD为直径的两圆公共弦中点的轨迹方程。
题型:不详难度:| 查看答案
我们把由半椭圆

合成的曲线称作“果圆”(其中)。如图,设点是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与xy轴的交点,若△F0F1F2是边长为1的等边三角形,则ab的值分别为 (    )

1,3,5


 
    
A.B.C.5,3D.5,4

题型:不详难度:| 查看答案
已知椭圆的上焦点为,左、右顶点分别为,下顶点为,直线与直线交于点,若,则椭圆的离心率为___________。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.