已知椭圆C的方程为,双曲线D与椭圆有相同的焦点F1,F2,P为它们的一个交点,PF1⊥PF2,则双曲线的离心率e为(    )。

已知椭圆C的方程为,双曲线D与椭圆有相同的焦点F1,F2,P为它们的一个交点,PF1⊥PF2,则双曲线的离心率e为(    )。

题型:专项题难度:来源:
已知椭圆C的方程为,双曲线D与椭圆有相同的焦点F1,F2,P为它们的一个交点,PF1⊥PF2,则双曲线的离心率e为(    )。
答案
举一反三
设椭圆C:(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且
(1)求椭圆C的离心率;
(2)若过A,Q,F2三点的圆恰好与直线l:相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由。
题型:专项题难度:| 查看答案
已知F1(-c,0),F2(c,0)是椭圆(a>b>0)的左、右焦点,过点F1作倾斜角为60°的直线l交椭圆于A,B两点,△ABF2的内切圆的半径为
(1)求椭圆的离心率;
(2)若,求椭圆的标准方程。
题型:吉林省模拟题难度:| 查看答案
已知椭圆C:的左、右焦点分别为F1,F2,若椭圆上总存在点P,使得点P在以F1F2为直径的圆上。
(1)求椭圆离心率的取值范围;
(2)若AB是椭圆C的任意一条不垂直x轴的弦,M为弦AB的中点,且满足(其中KAB,KOM分别表示直线AB,OM的斜率,O为坐标原点),求满足题意的椭圆C的方程。
题型:安徽省模拟题难度:| 查看答案
设椭圆M:(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4。
(1)求椭圆M的方程;
(2)若直线交椭圆于A,B两点,椭圆上一点P(1,),求△PAB面积的最大值。
题型:山东省模拟题难度:| 查看答案
若椭圆(a>b>0)与曲线x2+y2=a2-b2无公共点,则椭圆的离心率e的取值范围是 [     ]
A.
B.
C.
D.
题型:专项题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.