已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一个焦点是F2(2,0),且b=3a.(1)求双曲线C的方程;(2)设经过焦点F2的直线l的一个法向量为

已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一个焦点是F2(2,0),且b=3a.(1)求双曲线C的方程;(2)设经过焦点F2的直线l的一个法向量为

题型:长宁区二模难度:来源:
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点是F2(2,0),且b=


3
a

(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.
答案
(1)c=2c2=a2+b2
∴4=a2+3a2∴a2=1,b2=3,∴双曲线为x2-
y2
3
=1

(2)l:m(x-2)+y=0由





y=-mx+2m
x2-
y2
3
=1
得(3-m2)x2+4m2x-4m2-3=0
由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立





x1+x2>0
x1x2>0
4m2
m2-3
>0

4m2+3
m2-3
>0

∴m2>3∴m∈(-∞,-


3
)∪(


3
,+∞)

设A(x1,y1),B(x2,y2),则
x1+x2
2
=
2m2
m2-3
y1+y2
2
=-
2m3
m2-3
+2m=
-6m
m2-3

AB中点M(
2m2
m2-3
,-
6m
m2-3
)

3(
2m2
m2-3
-1)2-
36m2
(m2-3)2
=3×
(m2+3)2
(m2-3)2
-
36m2
(m2-3)2
=3•
m4+6m2+9-12m2
(m2-3)2
=3

∴M在曲线3(x-1)2-y2=3上.

(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,


OA


OB
>0

∴x1x2+y1y2>0
因为y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2
∴(1+m2)x1x2-2m2(x1+x2)+4m2>0
∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0
m2
3
5
,与m2>3矛盾
∴不存在
举一反三
已知双曲线x2-
y2
2
=1
,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.
题型:不详难度:| 查看答案
点P为双曲线C1(a>0,b>0)和圆C2:x2+y2=a2+b2的一个交点,且2∠PF1F2=∠PF2F1,其中F1,F2为双曲线C1的两个焦点,则双曲线C1的离心率为(  )
题型:许昌二模难度:| 查看答案
题型:不详难度:| 查看答案
题型:龙岩模拟难度:| 查看答案
A.B.1+C.+1D.2
一条斜率为1的直线ℓ与离心率为


3
的双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
交于P、Q两点,直线ℓ与y轴交于点R,且


OP


OQ
=-3


PQ
=4


RQ
,求直线与双曲线方程.
已知曲线
x2
a
-
y2
b
=1
与直线x+y-1=0相交于P、Q两点,且


OP


OQ
=0
(O为原点),则
1
a
-
1
b
的值为______.
双曲线(a>0,b>0)的中心、右焦点、左顶点、右准线与x轴的交点依次为O,F,A,H则的取值范围为(  )
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.(2,+∞)B.(0,2)C.(1,2)D.(0,+∞)