双曲线的中心是原点O,它的虚轴长为26,右焦点为F(c,0)(c>0),直线l:x=a2c与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q

双曲线的中心是原点O,它的虚轴长为26,右焦点为F(c,0)(c>0),直线l:x=a2c与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q

题型:不详难度:来源:
双曲线的中心是原点O,它的虚轴长为2


6
,右焦点为F(c,0)(c>0),直线l:x=
a2
c
与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.
(Ⅰ)求双曲线的方程;
(Ⅱ)若


AP


AQ
=0,求直线PQ的方程.
答案
解.(Ⅰ)由题意,设曲线的方程为
x2
a2
-
y2
b2
=1(a>0,b>0)
由已知





a2+6=c2
c=
3a2
c
解得a=


3
,c=3
所以双曲线的方程:
x2
3
-
y2
6
=1.
(Ⅱ)由(Ⅰ)知A(1,0),F(3,0),
当直线PQ与x轴垂直时,PQ方程为x=3.此时,


AP


AQ
≠0,应舍去.
当直线PQ与x轴不垂直时,设直线PQ的方程为y=k(x-3).
由方程组





x2
3
-
y2
6
=1
y=k(x-3)
得(k2-2)x2-6k2x+9k2+6=0
由于过点F的直线与双曲线交于P、Q两点,则k2-2≠0,即k≠±


2

由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.
∴k∈R且k≠±


2
(*)
设P(x1,y1),Q(x2,y2),则





x1+x2=
6k2
k2-2
(1)
x1x2=
9k2+6
k2-2
(2)

由直线PQ的方程得y1=k(x1-3),y2=k(x2-3)
于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)


AP


AQ
=0,
∴(x1-1,y1)•(x2-1,y2)=0
即x1x2-(x1+x2)+1+y1y2=0(4)
由(1)、(2)、(3)、(4)得
9k2+6
k2-2
-
6k2
k2-2
+1+k2(
9k2+6
k2-2
-3
6k2
k2-2
+9)
=0
整理得k2=
1
2

∴k=±


2
2
满足(*)
∴直线PQ的方程为x-


2
y
-3=0或x+


2
y
-3=0
举一反三
某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14m,CC′=18m,BB′=22m,塔高20m.
(Ⅰ)建立坐标系并写出该双曲线方程;
(Ⅱ)求冷却塔的容积(精确到10m3,塔壁厚度不计,π取3.14).魔方格
题型:江西难度:| 查看答案
已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”给出下列直线①y=x+1;②y=2;③y=x④y=2x+1;其中为“B型直线”的是(  )
题型:烟台二模难度:| 查看答案
题型:不详难度:| 查看答案
A.①③B.①②C.③④D.①④
四个森林防火观察站A,B,C,D的坐标依次为(5,0),(-5,0),(0,5),(0,-5),他们都发现某一地区有火讯.若A,B观察到的距离相差为6,且离A近,C,D观察到的距离相差也为6,且离C近.试求火讯点的坐标.
过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线(  )
题型:上海难度:| 查看答案
A.有且仅有一条B.有且仅有两条
C.有无穷多条D.不存在
设F1,F2是双曲线的两个焦点,点P在双曲线上,且·=0,则|PF1|·|PF2|值等于(  )
题型:安徽模拟难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.2B.2C.4D.8