在极坐标系中,直线l的极坐标方程为θ=(ρ∈R),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为(α为参数),求直线l与曲线C的交点P的

在极坐标系中,直线l的极坐标方程为θ=(ρ∈R),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为(α为参数),求直线l与曲线C的交点P的

题型:模拟题难度:来源:
在极坐标系中,直线l的极坐标方程为θ=(ρ∈R),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为(α为参数),求直线l与曲线C的交点P的直角坐标。
答案
解:因为直线l的极坐标方程为
所以直线l 的普通方程为
又因为曲线C的参数方程为(α为参数)
所以曲线C的直角坐标方程为
联立解方程组得
根据x的范围应舍去
故P点的直角坐标为(0,0)。
举一反三
已知抛物线C:x2=4y,直线y=kx-1与C交于第一象限的两点A、B,F是C的焦点,且|AF|=3|FB|,则k=

[     ]

A.
B.
C.
D.
题型:云南省模拟题难度:| 查看答案
若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”。已知当x>2时,点P(x,0)存在无穷多条“相关弦”。给定x0>2。
(1)证明:点P(x0,0)的所有“相关弦”中的中点的横坐标相同;
(2)试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由。
题型:湖南省高考真题难度:| 查看答案
已知点P是直角坐标平面内的动点,点P到直线x=--1(p是正常数)的距离为d1,到点F(,0)的距离为d2,且d1-d2=1,
(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B,分别过A、B点作直线l1:x=-的垂线,对应的垂足分别为M、N,求证=0;
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),,求λ的值.
题型:0112 模拟题难度:| 查看答案
已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线l交抛物线于A、B两点,抛物线在A、B两点处的切线交于点M。
(1)求证:A、M、B三点的横坐标成等差数列;
(2)设直线MF交该抛物线于C、D两点,求四边形ACBD面积的最小值。
题型:贵州省模拟题难度:| 查看答案
已知抛物线C:y=x2+mx+2与经过A(0,1),B(2,3)两点的线段AB有公共点,则m的取值范围是[     ]
A.(-∞,-1]∪[3,+∞)
B.[3,+∞)
C.(-∞,-1]
D.[-1,3]
题型:0128 模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.