在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为.(1)求轨迹为的方程;(2)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三

在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为.(1)求轨迹为的方程;(2)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三

题型:不详难度:来源:
在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为.
(1)求轨迹为的方程;
(2)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.
答案
(1);(2)当时直线与轨迹恰有一个公共点; 当时,故此时直线与轨迹恰有两个公共点; 当时,故此时直线与轨迹恰有三个公共点.
解析

试题分析:(1)设点,根据条件列出等式,在用两点间的距离公式表示,化简整理即得;(2)在点的轨迹中,记,设直线的方程为,联立方程组整理得 ,分类讨论①时;② ;③ ;④ ,确定直线与轨迹的公共点的个数.
(1)设点,依题意,,即
整理的
所以点的轨迹的方程为.
(2)在点的轨迹中,记
依题意,设直线的方程为
由方程组     ①
时,此时,把代入轨迹的方程得
所以此时直线与轨迹恰有一个公共点.
时,方程①的判别式为      ②
设直线轴的交点为,则由,令,得
(ⅰ)若,由②③解得.
即当时,直线没有公共点,与有一个公共点,
故此时直线与轨迹恰有一个公共点.
(ⅱ)若,由②③解得
即当时,直线有一个共点,与有一个公共点.
时 ,直线有两个共点,与没有公共点.
故当时,故此时直线与轨迹恰有两个公共点.
(ⅲ)若,由②③解得
即当时,直线有两个共点,与有一个公共点.
故当时,故此时直线与轨迹恰有三个公共点.
综上所述,当时直线与轨迹恰有一个公共点;
时,故此时直线与轨迹恰有两个公共点;
时,故此时直线与轨迹恰有三个公共点.
举一反三
如图,正方形和正方形的边长分别为,原点的中点,抛物线经过两点,则.

题型:不详难度:| 查看答案
已知点在抛物线C:的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为(    )
A.B.C.D.

题型:不详难度:| 查看答案
设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则
△OAB的面积为(  )
A.B.C.D.

题型:不详难度:| 查看答案
已知点在抛物线C:的准线上,记C的焦点为F,则直线AF的斜率为(    )
A.B.C.D.

题型:不详难度:| 查看答案
在平面直角坐标系中,分别是轴和轴上的动点,若以为直径的圆与直线相切,则圆面积的最小值为(   )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.