设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明:直线AC经过原点O.

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明:直线AC经过原点O.

题型:不详难度:来源:
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于AB两点,点C在抛物线的准线上,且BCx轴,证明:直线AC经过原点O.

答案
详见解析
解析

试题分析:证明直线AC经过原点O,实质证明三点共线,即证直线与直线的斜率相等. 设A(x1,y1),则只需证即可.利用三点共线,可用A(x1,y1)表示出点B纵坐标为,从而点C的坐标为(-,).因此直线CO的斜率为k===,所以直线AC经过原点O.
试题解析:证:如图所示,因为抛物线y2=2px(p>0)的焦点为F(,0),所以经过点F的直线AB的方程可设为x=my+       2分
代入抛物线方程得y2-2pmy-p2=0.
若记A(x1,y1)、B(x2,y2),则y1、y2是该方程的两个根,所以y1y2=-p2    7分.
因为BC∥x轴,且点C在准线x=-上,所以点C的坐标为(-,y2).
故直线CO的斜率为k===,
即k也是直线OA的斜率,所以直线AC经过原点O.        12分
举一反三
过抛物线的焦点的直线交抛物线于两点,如果,则  (     )
A.9   B.8 C.7D.6

题型:不详难度:| 查看答案
(13分)已知抛物线与直线交于AB两点,O为坐标原点.
(I)当k=1时,求线段AB的长;
(II)当k在R内变化时,求线段AB中点C的轨迹方程;
(III)设是该抛物线的准线.对于任意实数k上是否存在点D,使得?如果存在,求出点D的坐标;如不存在,说明理由. 
题型:不详难度:| 查看答案
若点的坐标为是抛物线的焦点,点在抛物线上移动时,取得最小值的的坐标为(    )
A.B.C.D.

题型:不详难度:| 查看答案
在平面直角坐标系xOy中,焦点为F(5,0)的抛物线的标准方程是     
题型:不详难度:| 查看答案
已知,抛物线的焦点,线段与抛物线的交点为,过作抛物线准线的垂线,垂足为,若,则_______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.