P为抛物线y2=2px上任一点,F为焦点,则以PF为直径的圆与y轴(  )A.相交B.相切C.相离D.位置由P确定

P为抛物线y2=2px上任一点,F为焦点,则以PF为直径的圆与y轴(  )A.相交B.相切C.相离D.位置由P确定

题型:不详难度:来源:
P为抛物线y2=2px上任一点,F为焦点,则以PF为直径的圆与y轴(  )
A.相交B.相切
C.相离D.位置由P确定
答案
根据题意,可得抛物线y2=2px的焦点为F(
p
2
,0),
设P(m,n),PF的中点为A(x1,y1),
可得x1=
1
2
p
2
+m),
过P作准线l:x=-
p
2
的垂线,垂足为Q如图所示.
由抛物线的定义,得|PF|=|PQ|=m+
p
2

∴x1=
1
2
|PF|,即点A到y轴的距离等于以PF为直径的圆的半径.
因此,以PF为直径的圆与y轴相切.
故选:B
举一反三
已知抛物线C:y2=4x,O为坐标原点,F为C的焦点,P是C上一点.若△OPF是等腰三角形,则|PO|=______.
题型:不详难度:| 查看答案
曲线C是平面内与定点F(2,0)和定直线x=-2的距离的积等于4的点的轨迹.给出下列四个结论:
①曲线C过坐标原点;
②曲线C关于x轴对称;
③曲线C与y轴有3个交点;
④若点M在曲线C上,则|MF|的最小值为2(


2
-1)

其中,所有正确结论的序号是______.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知点A(4,0),动点M在y轴上的正射影为点N,且满足直线MO⊥NA.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)当∠MOA=
π
6
时,求直线NA的方程.
题型:不详难度:| 查看答案
过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1)、Q(x2,y2)两点,如果x1+x2=6,则|PQ|=(  )
A.9B.8C.7D.6
题型:不详难度:| 查看答案
设AB为抛物线y2=x上的动弦,且|AB|=2,则弦AB的中点M到y轴的最小距离为(  )
A.2B.
3
4
C.1D.
5
4
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.