等腰直角三角形OAB内接于抛物线y2=2px(p>0),O是抛物线的顶点,OA⊥OB,则△OAB的面积为______.

等腰直角三角形OAB内接于抛物线y2=2px(p>0),O是抛物线的顶点,OA⊥OB,则△OAB的面积为______.

题型:不详难度:来源:
等腰直角三角形OAB内接于抛物线y2=2px(p>0),O是抛物线的顶点,OA⊥OB,则△OAB的面积为______.
答案
设等腰直角三角形OAB的顶点A(x1,y1),B(x2,y2),则y12=2px1y22=2px2
由OA=OB得:x12+y12=x22+y22
x12-x22+2px1-2px2=0,即(x1-x2)(x1+x2+2p)=0,
∵x1>0,x2>0,2p>0,
∴x1=x2,即A,B关于x轴对称.
∴直线OA的方程为:y=xtan45°=x,由





y2=2px
y=x
解得





x=0
y=0





x=2p
y=2p

故AB=4p,
∴S△OAB=
1
2
×2p×4p=4p2
故答案为:4p2
举一反三
对于顶点在原点的抛物线,给出下列条件:
①焦点在y轴上;
②焦点在x轴上;
③抛物线上横坐标为1的点到焦点的距离等于6;
④抛物线的通径的长为5;
⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).
能满足此抛物线方程y2=10x的条件是 ______(要求填写合适条件的序号).
题型:不详难度:| 查看答案
已知抛物线的焦点F在x轴上,直线l过点F且垂直于x轴,l与抛物线交于A、B两点,O为坐标原点,若△OAB的面积等于4,求此抛物线的标准方程.
题型:不详难度:| 查看答案
过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A,B两点(点A在y轴左侧),求
|AF|
|BF|
的值.
题型:不详难度:| 查看答案
过抛物线y2=4x的焦点作直线交抛物线于点A(x1,y1),B(x2,y2)若|AB|=7,则AB的中点M到抛物线准线的距离为(  )
题型:不详难度:| 查看答案
AB.C.2D.
抛物线y=ax2(a<0)的焦点坐标是(  )
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.(0,B.(0,C.(0,-D.(,0)