如图,在平面直角坐标系xOy中,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2

如图,在平面直角坐标系xOy中,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2

题型:不详难度:来源:
如图,在平面直角坐标系xOy中,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设x1=2,x2,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
答案
(1)x=(2)(3)见解析
解析
(1)解:设点P(x,y),则F(2,0)、B(3,0)、A(-3,0).由PF2-PB2=4,得(x-2)2+y2-[(x-3)2+y2]=4,化简得x=,故所求点P的轨迹为直线x=.
(2)解:将x1=2,x2分别代入椭圆方程,以及y1>0,y2<0得M、N.直线MTA的方程为,即y=x+1.直线NTB的方程为,即y=x-.联立方程组,解得所以点T的坐标为.
(3)证明:点T的坐标为(9,m),直线MTA的方程为,即y=(x+3).直线NTB的方程为,即y=(x-3).
分别与椭圆=1联立方程组,同时考虑到x1≠-3,x2≠3,解得
M、N
(证法1)当x1≠x2时,直线MN的方程为,令y=0,解得x=1,此时必过点D(1,0);当x1=x2时,直线MN的方程为x=1,与x轴交点为D(1,0),所以直线MN必过x轴上的一定点D(1,0).
(证法2)若x1=x2,则由及m>0,得m=2,此时直线MN的方程为x=1,

过点D(1,0).若x1≠x2,则m≠2.直线MD的斜率kMD
直线ND的斜率kND,得kMD=kND,所以直线MN过D点.
因此,直线MN必过x轴上的点D(1,0).
举一反三
已知椭圆C:=1(a>b>0)的离心率e=,一条准线方程为x=
(1)求椭圆C的方程;
(2)设G、H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.
①当直线OG的倾斜角为60°时,求△GOH的面积;
②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2).
(1)求双曲线C的方程;
(2)求直线AB方程;
(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
题型:不详难度:| 查看答案
已知点是双曲线的左焦点,离心率为e,过F且平行于双曲线渐近线的直线与圆交于点P,且点P在抛物线上,则e2 =(   )
A.B.C.D.

题型:不详难度:| 查看答案
如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点MN.

(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于MN的任意一点,且直线MPNP分别与轴交于点RSO为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.
题型:不详难度:| 查看答案
是定点,且均不在平面上,动点在平面上,且,则点的轨迹为(  )
A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.