设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2).(1)求双曲线C的方程;(2)求直

设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2).(1)求双曲线C的方程;(2)求直

题型:不详难度:来源:
设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2).
(1)求双曲线C的方程;
(2)求直线AB方程;
(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
答案
(1) (2)  (3)是,理由见解析
解析

试题分析:
(1)根据题意已知,则利用双曲线a,b,c之间的关系与离心率的定义即可求出的值,进而得到双曲线的标准方程.
(2)根据题意可得AB为双曲线的一条弦,要求弦所在直线,还需要斜率,可以采用点差法利用弦的中来求解弦的斜率,已知了弦所在直线的斜率与弦上的中点坐标,再利用直线的点斜式即可求出弦所在直线的方程.
(3)由(2)可得AB直线的方程,联立直线AB与双曲线的方程消元解二次方程即可得到A,B两点的坐标,已知AB线段的斜率与中点即可求的AB垂直平分线的直线方程,联立垂直平分线与双曲线的方程消元解二次方程即可求的CD两点的坐标.
试题解析:
(1)依题意得,解得a=1.                         (1分)
所以,                                    (2分)
故双曲线C的方程为.                                  (3分)
(2)设,则有 .
两式相减得: ,             (4分)
由题意得,                     (5分)
所以,即.                         (6分)
故直线AB的方程为.                                     (7分)
(3)假设A、B、C、D四点共圆,且圆心为P. 因为AB为圆P的弦,所以圆心P在AB垂直平分线CD上;又CD为圆P的弦且垂直平分AB,故圆心P为CD中点M. (8分)
下面只需证CD的中点M满足|MA|=|MB|=|MC|=|MD|即可.
得:A(-1,0),B(3,4).                         (9分)
由(1)得直线CD方程:,                             (10分)
得:C(-3+,6-),D(-3-,6+),  (11分)
所以CD的中点M(-3,6).                                      (12分)
因为
,            (13分)
所以
即 A、B、C、D四点在以点M(-3,6)为圆心,为半径的圆上.  (14分)
举一反三
已知点是双曲线的左焦点,离心率为e,过F且平行于双曲线渐近线的直线与圆交于点P,且点P在抛物线上,则e2 =(   )
A.B.C.D.

题型:不详难度:| 查看答案
如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点MN.

(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于MN的任意一点,且直线MPNP分别与轴交于点RSO为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.
题型:不详难度:| 查看答案
是定点,且均不在平面上,动点在平面上,且,则点的轨迹为(  )
A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能

题型:不详难度:| 查看答案
已知椭圆的右焦点为,点在椭圆上.

(1)求椭圆的方程;
(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,问:△的周长是否为定值?如果是,求出定值;如果不是,说明理由.
题型:不详难度:| 查看答案
给出下列命题:
(1)设为两个定点,为非零常数,,则动点的轨迹为双曲线;
(2)若等比数列的前项和,则必有
(3)若的最小值为2;
(4)双曲线有相同的焦点;
(5)平面内到定点(3,-1)的距离等于到定直线的距离的点的轨迹是抛物线.
其中正确命题的序号是               .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.