已知椭圆的右焦点为,点在椭圆上.(1)求椭圆的方程;(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,问:△的周长是否为定值?如果是,求出定值;如果不是

已知椭圆的右焦点为,点在椭圆上.(1)求椭圆的方程;(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,问:△的周长是否为定值?如果是,求出定值;如果不是

题型:不详难度:来源:
已知椭圆的右焦点为,点在椭圆上.

(1)求椭圆的方程;
(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,问:△的周长是否为定值?如果是,求出定值;如果不是,说明理由.
答案
(1);(2)详见解析
解析

试题分析:(1)根据点在曲线上可代入方程,再根据椭圆中,解方程组可得的值。从而可得椭圆方程。法二,还可根据椭圆的定义椭圆上点到两焦点的距离为直接求得,再根据。(2)设的方程为,根据与圆相切可得间的关系。再将直线与椭圆方程联立消掉整理为关于的一元二次方程,可得根与系数的关系。由直线与圆锥曲线的相交弦公式可得,再根据两点间距离可求,将三边长相加,根据前边得到的间的关系问题即可得证。
试题解析:(1)『解法1』:
(1)由题意,得,2分
解得4分
∴椭圆方程为.5分
『解法2』:
右焦点为
左焦点为,点在椭圆上

所以
所以椭圆方程为5分
(2)『解法1』:
由题意,设的方程为
与圆相切
,即6分
,得7分
,则8分

10分

 

11分
(定值)12分
『解法2』:


8分
连接,由相切条件知:

10分
同理可求
所以为定值.12分
举一反三
给出下列命题:
(1)设为两个定点,为非零常数,,则动点的轨迹为双曲线;
(2)若等比数列的前项和,则必有
(3)若的最小值为2;
(4)双曲线有相同的焦点;
(5)平面内到定点(3,-1)的距离等于到定直线的距离的点的轨迹是抛物线.
其中正确命题的序号是               .
题型:不详难度:| 查看答案
已知点A(1,0)及圆,C为圆B上任意一点,求AC垂直平分线与线段BC的交点P的轨迹方程。
题型:不详难度:| 查看答案
如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.点为圆上任一点,且满足,动点的轨迹记为曲线

(1)求圆的方程及曲线的方程;
(2)若两条直线分别交曲线于点,求四边形面积的最大值,并求此时的的值.
(3)证明:曲线为椭圆,并求椭圆的焦点坐标.
题型:不详难度:| 查看答案
方程的曲线即为函数的图象,对于函数,下列命题中正确的是.(请写出所有正确命题的序号)
①函数上是单调递减函数;②函数的值域是
③函数的图象不经过第一象限;④函数的图象关于直线对称;
⑤函数至少存在一个零点.
题型:不详难度:| 查看答案
如图,已知椭圆E:的离心率为,过左焦点且斜率为的直线交椭圆EA,B两点,线段AB的中点为M,直线交椭圆EC,D两点.

(1)求椭圆E的方程;
(2)求证:点M在直线上;
(3)是否存在实数k,使得三角形BDM的面积是三角形ACM的3倍?若存在,求出k的值;
若不存在,说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.