知圆柱的底面半径为2,高为3,用一个平面去截,若所截得的截面为椭圆,则椭圆的离心率的取值范围为(  )A.B.(0,C.D.(0,

知圆柱的底面半径为2,高为3,用一个平面去截,若所截得的截面为椭圆,则椭圆的离心率的取值范围为(  )A.B.(0,C.D.(0,

题型:不详难度:来源:
知圆柱的底面半径为2,高为3,用一个平面去截,若所截得的截面为椭圆,则椭圆的离心率的取值范围为(  )
A.B.(0,C.D.(0,

答案
B
解析

试题分析:依题意,,则(0,。故选B。
点评:在椭圆中,经常用到一个关系式:
举一反三
如右图,抛物线C:(p>0)的焦点为F,A为C上的点,以F为圆心,为半径的圆与线段AF的交点为B,∠AFx=60°,A在y轴上的射影为N,则∠=      
题型:不详难度:| 查看答案
已知椭圆的对称轴为坐标轴,焦点是(0,),(0,),又点在椭圆上.
(1)求椭圆的方程;
(2)已知直线的斜率为,若直线与椭圆交于两点,求面积的最大值.
题型:不详难度:| 查看答案
已知满足,记目标函数的最大值为7,最小值为1,则 (     )
A.2B.1C.-1D.-2

题型:不详难度:| 查看答案
已知椭圆和双曲线有相同的焦点F1、F2,以线段F1F2为边作正△F1F2M,若椭圆与双曲线的一个交点P恰好是MF1的中点,设椭圆和双曲线的离心率分别为等于
A.5B.2C.3D.4

题型:不详难度:| 查看答案
如图,己知直线l与抛物线相切于点P(2,1),且与x轴交于点A,定点B(2,0).

(1)若动点M满足,求点M轨迹C的方程:
(2)若过点B的直线(斜率不为零)与(1)中的轨迹C交于不同的两点E,F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.