已知双曲线的渐近线与圆相切,则双曲线的离心率为(  )A.B.2C.D.3

已知双曲线的渐近线与圆相切,则双曲线的离心率为(  )A.B.2C.D.3

题型:不详难度:来源:
已知双曲线的渐近线与圆相切,则双曲线的离心率为(  )
A.B.2C.D.3

答案
B
解析

试题分析:根据题意,由于双曲线的渐近线与圆相切,那么可知圆心(0,2)到直线 的距离为圆的半径为1,即可知,则其离心率为 =2,故答案为B.
点评:本题以双曲线方程与圆的方程为载体,考查直线与圆相切,考查双曲线的几何性质,解题的关键是利用直线与圆相切时,圆心到直线的距离等于半径
举一反三
若双曲线的渐近线与圆)相切,则
A.5B.C.2D.

题型:不详难度:| 查看答案
如图,在△ABC中,∠CAB=∠CBA=30°,AC、BC边上的高分别为BD、AE,则以A、B为焦点,且过D、E的椭圆与双曲线的离心率分别为,则     
题型:不详难度:| 查看答案
已知椭圆C:()经过两点.

(Ⅰ)求椭圆的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足.求证:为定值.
题型:不详难度:| 查看答案
设椭圆与抛物线的焦点均在轴上,的中心及的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:










(Ⅰ)求曲线的标准方程;
(Ⅱ)设直线过抛物线的焦点与椭圆交于不同的两点,当时,求直线的方程.
题型:不详难度:| 查看答案
设圆的极坐标方程为,以极点为直角坐标系的原点,极轴为轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆上的一点作平行于轴的直线,设轴交于点,向量
(Ⅰ)求动点的轨迹方程;
(Ⅱ)设点 ,求的最小值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.