试题分析:(1) ; () 由方程组 ,消y得方,因为直线交圆于、两点,所以D>0,即,设C(x1 ,y1 )、D(x2 ,y2 , D中点坐标为(x0 ,y0 ),则,由方组,消y得方(k2 -k1 )xp,又因为,所以,故E为CD的中点; (3) 作点P1、P2的步骤:°求出PQ的中点,2°求出直线OE的斜率,3由知E为CD的中点,根据()可得CD的斜率,4°从而得直线CD的方程:, 5°将直线CD与圆 Γ的方程联立,方程组的解即为点P1 P2的坐标. 使P1、P2存在,必须点在椭圆内,所以,化简得,,又0<q <p,即,所以,故q 的取值范围是. 点评:本题主要考查了直线与圆锥曲线的综合问题.解题的前提是要求学生对基础知识有相当熟练的把握。 |