设斜率为2的直线l过双曲线的右焦 点,且与双曲线的左、右两支分别相交,则双曲线离心率e的取值范围是(   )A.e>B.e>C.1<e<D.1<e<

设斜率为2的直线l过双曲线的右焦 点,且与双曲线的左、右两支分别相交,则双曲线离心率e的取值范围是(   )A.e>B.e>C.1<e<D.1<e<

题型:不详难度:来源:
设斜率为2的直线l过双曲线的右焦 点,且与双曲线的左、右两支分别相交,则双曲线离心率e的取值范围是(   )
A.e>B.e>C.1<e<D.1<e<

答案
A
解析

试题分析:根据已知的题意,设斜率为2的直线l过双曲线的右焦 点,且与双曲线的左、右两支分别相交,则说明其斜率应该是满足小于渐近线的斜率,即可知,故选A.
点评:解决该试题的关键是理解直线的斜率与双曲线的渐近线斜率之间的关系,从而满足题意,属于基础题。
举一反三
若抛物线的焦点与双曲线的右焦点重合,则的值          
题型:不详难度:| 查看答案
(本小题满分12分)设直线与椭圆相交于两个不同的点,与轴相交于点,记为坐标原点.
(1)证明:
(2)若的面积及椭圆方程.
题型:不详难度:| 查看答案
椭圆C:=1(a>b>0)的两个焦点分别为F1(﹣c,0),F2(c,0),M是椭圆短轴的一个端点,且满足=0,点N( 0,3 )到椭圆上的点的最远距离为5
(1)求椭圆C的方程
(2)设斜率为k(k≠0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,;问A、B两点能否关于过点P、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
题型:不详难度:| 查看答案
抛物线的焦点到双曲线的渐近线的距离为(    )
A.B.C.D.

题型:不详难度:| 查看答案
我国发射的“神舟七号”飞船的运行轨道是以地球的中心为一个焦点的椭圆,近地点A距地面为千米,远地点B距地面为千米,地球半径为千米,则飞船运行轨道的短轴长为(   )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.