椭圆的左、右焦点分别为、, 过焦点F1的直线交椭圆于两点,若的内切圆的面积为,,两点的坐标分别为和,则的值为___________。

椭圆的左、右焦点分别为、, 过焦点F1的直线交椭圆于两点,若的内切圆的面积为,,两点的坐标分别为和,则的值为___________。

题型:不详难度:来源:
椭圆的左、右焦点分别为, 过焦点F1的直线交椭圆于两点,若的内切圆的面积为两点的坐标分别为,则的值为___________。
答案

解析
解:椭圆:x2/ 16 +y2/ 9 =1,a=4,b=3,∴c= 7 ,
左、右焦点F1(-  ,0)、F2 ,0),
△ABF2的内切圆面积为π,则内切圆的半径为r=1,
而△ABF2的面积=△AF1F2的面积+△BF1F2的面积="1" /2 ×|y1|×|F1F2|+1/ 2 ×|y2|×|F1F2|="1" /2 ×(|y1|+|y2|)×|F1F2|= |y2-y1|(A、B在x轴的上下两侧)
又△ABF2的面积═1 /2 ×|r(|AB|+|BF2|+|F2A|="1" /2 ×(2a+2a)=2a=8.
所以  |y2-y1|=8,|y2-y1|=.故答案为
举一反三
两定点的坐标分别为,动点满足条件,动点的轨迹方程是                 .
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,椭圆的左、右焦点分别为.已知都在椭圆上,其中为椭圆的离心率.
(1)求椭圆的方程;
(2)设是椭圆上位于轴上方的两点,且直线与直线平行,交于点P.
(i)若,求直线的斜率;
(ii)求证:是定值.
题型:不详难度:| 查看答案
设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC顶点C的轨迹方程;
(Ⅱ)设顶点C的轨迹为D,已知直线过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线的方程.
题型:不详难度:| 查看答案
已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
是椭圆的左、右焦点,是该椭圆短轴的一个端点,直线与椭圆交于点,若成等差数列,则该椭圆的离心率为 .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.