(本小题满分14分)已知椭圆:上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(Ⅰ) 求椭圆的方程;(Ⅱ) 过点(,)的动直线交椭圆于、两

(本小题满分14分)已知椭圆:上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(Ⅰ) 求椭圆的方程;(Ⅱ) 过点(,)的动直线交椭圆于、两

题型:不详难度:来源:

(本小题满分14分)
已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 过点()的动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.
答案
解: (Ⅰ)设椭圆的焦距为,则由题设可知,解此方程组得
.   所以椭圆C的方程是.     ………5分
(Ⅱ)解法一:假设存在点Tu, v). 若直线l的斜率存在,设其方程为
将它代入椭圆方程,并整理,得     
设点A、B的坐标分别为,则    ……7分
因为
所以

                          ……10分
当且仅当恒成立时,以AB为直径的圆恒过定点T
所以解得
此时以AB为直径的圆恒过定点T(0,1).                         ……12分
当直线l的斜率不存在,ly轴重合,以AB为直径的圆为也过点T(0,1).
综上可知,在坐标平面上存在一个定点T(0,1),满足条件.         ……14分
解法二:若直线ly轴重合,则以AB为直径的圆是
若直线l垂直于y轴,则以AB为直径的圆是      
解得.
由此可知所求点T如果存在,只能是(0,1).                      ……8分
事实上点T(0,1)就是所求的点. 证明如下:
当直线l的斜率不存在,即直线ly轴重合时,以AB为直径的圆为
过点T(0,1);当直线l的斜率存在,设直线方程为,代入椭圆方程,并整理,得
设点A、B的坐标为,则           ……11分
因为

 
所以,即以AB为直径的圆恒过定点T(0,1).              ……13分
综上可知,在坐标平面上存在一个定点T(0,1)满足条件.           ……14分
解析

举一反三
(本题满分14分)给定椭圆>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为
(1)求椭圆的方程及其“伴随圆”方程;
(2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的伴随圆相交于M、N两
点,求弦MN的长;
(3)点是椭圆的伴随圆上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:.
题型:不详难度:| 查看答案
(本小题满分12分)(注意:在试题卷上作答无效)
已知的顶点A在射线上,两点关于x轴对称,0为坐标原点,
且线段AB上有一点M满足当点A在上移动时,记点M的轨迹为W.
(Ⅰ)求轨迹W的方程;
(Ⅱ)设是否存在过的直线与W相交于P,Q两点,使得若存在,
求出直线;若不存在,说明理由.
题型:不详难度:| 查看答案
已知椭圆的对称轴为坐标轴,一个焦点为,点在椭圆
(Ⅰ)求椭圆的谢方程
(Ⅱ)已知直线与椭圆交于两点,求的面积
(Ⅲ)设为椭圆上一点,若,求点的坐标
题型:不详难度:| 查看答案
设直线l与抛物线y2=2px(p>0)交于A、B两点,已知当直线l经过抛物线的焦点且与x轴垂直时,△OAB的面积为(O为坐标原点).
(Ⅰ)求抛物线的方程;
(Ⅱ)当直线l经过点P(a,0)(a>0)且与x轴不垂直时,
若在x轴上存在点C,使得△ABC为等边三角形,求a
的取值范围.

题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为.记动点C的轨迹为曲线W
(Ⅰ)求W的方程;
(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W有两个不同的交点PQ,求k的取值范围;
(Ⅲ)已知点M),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量 与共线?如果存在,求出k的值;如果不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.