已知定点A(-2,-4),过点A作倾斜角为45 的直线l,交抛物线y2=2px(p>0)于B、C两点,且|BC|=210.(Ⅰ)求抛物线的方程;(Ⅱ)在(Ⅰ)中

已知定点A(-2,-4),过点A作倾斜角为45 的直线l,交抛物线y2=2px(p>0)于B、C两点,且|BC|=210.(Ⅰ)求抛物线的方程;(Ⅱ)在(Ⅰ)中

题型:不详难度:来源:
已知定点A(-2,-4),过点A作倾斜角为45 的直线l,交抛物线y2=2px(p>0)于B、C两点,且|BC|=210.(Ⅰ)求抛物线的方程;(Ⅱ)在(Ⅰ)中的抛物线上是否存在点D,使得|DB|=|DC|成立?如果存在,求出点D的坐标;如果不存在,请说明理由.
答案
(Ⅰ) y2=2x.  (Ⅱ)   见解析
解析
(Ⅰ)直线l方程为y=x-2,将其代入y2=2px,并整理,得
x2-2(2+p)x+4=0…①,∵p>0,∴△=4(2+p)2-16>0,
设B(x1,y1)、C(x2,y2),∴x1+x2=4+2p,x1·x2=4,∵|BC|=210,而|BC|=1+k2|x1-x2|,
∴22p2+4p=210,解得p=1,∴抛物线方程y2=2x.
(Ⅱ)假设在抛物线y2=2x上存在点D(x3,y3),使得|DB|=|DC|成立,
记线段BC中点为E(x0,y0),则|DB|=|DC| DE⊥BC kDE=-1k1=-1,
当p=1时,①式成为x2-6x+4=0,∴x0=x1+x22=3,y0=x0-2=1,
∴点D(x3,y3)应满足   y23=2x3y3-1x3-3=-1,解得  x3=2y3=2或  x3=8y3=-4.
∴存在点D(2,2)或(8,-4),使得|DB|=|DC|成立.
举一反三
已知动点P到直线的距离比它到点F的距离大.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)若点P的轨迹上不存在两点关于直线l对称,求实数的取值范围.
题型:不详难度:| 查看答案
已知向量,动点到定直线的距离等于,并且满足,其中为坐标原点,为非负实数.
(1)求动点的轨迹方程
(2)若将曲线向左平移一个单位,得曲线,试判断曲线为何种类型;
(3)若(2)中曲线为圆锥曲线,其离心率满足,当是曲线的两个焦点时,则圆锥曲线上恒存在点,使得成立,求实数的取值范围.
题型:不详难度:| 查看答案
已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率,过椭圆的右焦点作与坐标轴不垂直的直线交椭圆于两点.
(1)求椭圆方程; 
(2)设点是线段上的一个动点,且,求的取值范围;
(3)设点是点关于轴对称点,在轴上是否存在一个定点,使得三点共线?若存在,求出定点的坐标,若不存在,请说明理由.
题型:不详难度:| 查看答案
(12分)已知焦点在轴上,离心率为的椭圆的一个顶点是抛物线的焦点,过椭圆右焦点的直线交椭圆于两点,交轴于点,且,(1)求椭圆方程;(2)证明:为定值
题型:不详难度:| 查看答案
若椭圆的离心率是,则双曲线的离心率是___________
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.