已知椭圆C:上动点到定点,其中的距离的最小值为1.(1)请确定M点的坐标(2)试问是否存在经过M点的直线,使与椭圆C的两个交点A、B满足条件(O为原点),若存在

已知椭圆C:上动点到定点,其中的距离的最小值为1.(1)请确定M点的坐标(2)试问是否存在经过M点的直线,使与椭圆C的两个交点A、B满足条件(O为原点),若存在

题型:不详难度:来源:

已知椭圆C:上动点到定点,其中的距离的最小值为1.(1)请确定M点的坐标(2)试问是否存在经过M点的直线,使与椭圆C的两个交点A、B满足条件(O为原点),若存在,求出的方程,若不存在请说是理由。
答案
(1,0);这样的直线不存在。
解析
【思维分析】此题解题关键是由条件从而将条件转化点的坐标运算再结合韦达定理解答。
解析:设,由由于故当时,的最小值为此时,当时,取得最小值为解得不合题意舍去。综上所知当是满足题意此时M的坐标为(1,0)。
(2)由题意知条件等价于,当的斜率不存在时,与C的交点为,此时,设的方程为,代入椭圆方程整理得,由于点M在椭圆内部故恒成立,由,据韦达定理得代入上式得不合题意。综上知这样的直线不存在。
【知识点归类点拔】在解题过程中要注意将在向量给出的条件转化向量的坐标运算,从而与两交点的坐标联系起来才自然应用韦达定理建立起关系式。此题解答具有很强的示范性,请同学们认真体会、融会贯通。

 
举一反三
如图所示,已知圆为圆上一动点,点P在AM上,点N在CM上,且满足的轨迹为曲线E.

(I)求曲线E的方程;                                               
(II)过点A且倾斜角是45°的直线l交曲线E于两点H、Q,求|HQ|.
题型:不详难度:| 查看答案
如图, 两点分别在射线OS,OT上移动,
,O为坐标原点,动点P满足.
(1)求的值
(2)求点P的轨迹C的方程,并说明它表示怎样的曲线.
题型:不详难度:| 查看答案
O为坐标原点, 两点分别在射线 上移动,且,动点P满足,
记点P的轨迹为C.
(I)求的值;
(II)求P点的轨迹C的方程,并说明它表示怎样的曲线?
(III)设点G(-1,0),若直线与曲线C交于M、N两点,且M、N两点都在以G为圆心的圆上,求的取值范围.
题型:不详难度:| 查看答案
(本小题满分12分)已知椭圆:的离心率,过点的直线与椭圆交于两点,且,求面积的最大值及取得最大值时椭圆的方程.
题型:不详难度:| 查看答案
如图, 共顶点的椭圆①,②与双曲线③,④的离心率分别
,其大小关系为 (   )
A.B.
C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.