(本题15分)已知曲线C是到点和到直线距离相等的点的轨迹,l是过点Q(-1,0)的直线,M是C上(不在l上)的动点;A、B在l上,轴(如图)。(Ⅰ)求曲线C的方

(本题15分)已知曲线C是到点和到直线距离相等的点的轨迹,l是过点Q(-1,0)的直线,M是C上(不在l上)的动点;A、B在l上,轴(如图)。(Ⅰ)求曲线C的方

题型:不详难度:来源:
(本题15分)已知曲线C是到点和到直线

距离相等的点的轨迹,l是过点Q(-1,0)的直线,
MC上(不在l上)的动点;A、Bl上,
轴(如图)。
(Ⅰ)求曲线C的方程;
(Ⅱ)求出直线l的方程,使得为常数。
答案
(Ⅰ) ,(Ⅱ)
解析
本题主要考查求曲线轨迹方程,两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力。满分15分。


(I)设C上的点,则

N到直线的距离为
由题设得
化简,得曲线C的方程为
(II)解法一:
,直线l,则,从而

在Rt△QMA中,因为   
,  

所以 


k=2时,
从而所求直线l方程为
解法二:
,直线直线l,则,从而

垂直于l的直线l1
因为,所以


k=2时,
从而所求直线l方程为
举一反三
如图,在面积为18的△ABC中,AB=5,双曲线E过点A,



 
且以B、C为焦点,已知(Ⅰ)建立适当的坐标系,求双曲线E的方程;
(Ⅱ)是否存在过点D(1,1)的直线l
使l与双曲线E交于不同的两点M、N,且
如果存在,求出直线l的方程;如果不存在,请说明理由.
题型:不详难度:| 查看答案
抛物线y2=2px(p>0)与双曲线有相同焦点F,点A是两曲线交点,且AF⊥x轴,则双曲线的离心率为                                                                   ( )
A.B.C.D.

题型:不详难度:| 查看答案
(理)已知方程x4+y2=1,给出下列结论:①它的图形关于x轴对称;②它的图形关于y轴对称;③它的图形是一条封闭的曲线,且面积小于π;④它的图形是一条封闭的曲线,且面积大于π.真命题的序号是           .
题型:不详难度:| 查看答案
(13分)已知F1、F2是椭圆c1(a>b>0)的左、右焦点,A为右顶点,P为椭圆c1上任意一点,且最大值的取值范围是[c2,3c2],c2=a2-b2.(1)求椭圆c1离心率e的取值范围;(2)设双曲线c2以椭圆c1焦点为顶点,顶点为焦点,B是双曲线c2在第一象限上任意一点,当椭圆c1离心率e取得最小值时,问是否存在正常数λ使∠BAF1=λ∠BF1A恒成立?若存在,求出λ值;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知双曲线(b>0)的焦点,则b=()
A.3B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.